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Abbreviations 

IF: Immunofluorescent; CBPD: Common Biliopancreatic 

Duct; JC: Junctional Complex; PDL: Pancreatic Duct 

Ligation; DAPI: 4,6-Diamidino-2-Phenylindole 

Dihydrochloride Hydrate; ER: Endoplasmic Reticulum; TJ: 

Tight Junction; AJ: Adherens Junction. 

Introduction 

 Acute pancreatitis is an inflammatory disease involving 

complex systemic changes, and trypsin autoactivation has 

been described as the initial mechanism in an opossum model 

of common biliopancreatic duct (CBPD) obstruction [1]. 

However, disturbances of the microcirculation regulated by 

sensory nerves play an important role in the initiation and 
progression of acute pancreatitis. The activation of sensory 

nerves containing a variety of receptors and ion channels, 

such as nociceptive ion-channel transient receptor potential 

vanilloid type 1 (TRPV1), causes the release of inflammatory 

neuropeptides, such as substance P and calcitonin gene-related 

peptide (CGRP), leading to local vasodilation and plasma 

extravasation. The local angiotensin-renin system was also 

reported to be involved in nuclear transcription factor NF-κB 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

activation [2]. Furthermore, proinflammatory mediators, such 

as capsaicin (a neural product of the hot pepper plant) and 

leukotriene B4 (a lipid mediator), regulate TRPV1 directly or 
indirectly on sensory nerves [3], whereas CGRP reduces NF-

κB-related inflammatory gene products of proinflammatory 

cytokines and adhesion protein molecules [4]. Recently, the 

immunohistochemical expression of TRPV1, insulin receptor, 

substance P, and CGRP was reported to colocalize at the 

pancreas dorsal root ganglion and nodose ganglion neurons, 

suggesting a role for their functional interaction [5,6]. 

In routine practice, most human acute pancreatitis is 

mild and self-limiting [7]. Trypsin autoactivation and NF-κB 

activation may be limited in mild pancreatitis without tissue 

necrosis. Morphologically, interstitial edema is commonly 
observed in acute pancreatitis with or without tissue necrosis. 

The mechanism leading to the formation of interstitial edema 

is now considered to involve an increase in vascular 

permeability secondary to cytokine release from the injured 

tissue, periacinar myofibroblasts, and leukocytes [8-10]. This 

idea seems to fit the formation of interstitial edema in severe 

pancreatitis with tissue necrosis, in which leakage of cellular 

contents from degenerated acinar cells or misplaced 

exocytosis due to a derangement in cell polarity develops. 

Concerning mild pancreatitis without tissue necrosis, we 

asked the simple question of whether or not interstitial edema 
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proteins pan-cadherin and β-catenin showed no significant changes throughout the course of the experiment. Ultrastructurally, 
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formation might be triggered by increased vascular 

permeability. Indeed, some researchers have reported changes 

in duct and acinar permeability, suggesting increases in 

paracellular permeability, in various pancreatitis models [11-

15]. 
To examine paracellular permeability in relation to 

interstitial edema formation in the initial phase of mild 

pancreatitis, we focused on specialized plasma membrane 

structures called junctional complexes (JCs), which are 

observed at the cell-cell border and are composed of 

occluding junctions and anchoring junctions [16]. In 

pancreatic acini, tight junctions (TJs) correspond to occluding 

junctions and function as seals with fused plasma membranes, 

thereby blocking the leakage of intra-luminal fluid into the 

paracellular spaces. If these structures are damaged in acute 

pancreatitis, the paracellular permeability would be increased, 

and the leakage of luminal fluid would lead to interstitial 
edema. 

We selected an acute edematous pancreatitis model 

involving pancreatic duct ligation (PDL) in rats rather than an 

opossum model of CBPD obstruction. Using this model, we 

confirmed immunofluorescently and ultrastructurally whether 

or not TJs showed changes in the initial phase of pancreatitis 

without tissue necrosis.  

Materials and Methods 

Animal preparation 

Male Sprague-Dawley rats (12-15 weeks, weight 330-
480 g; SLC, Inc., Shizuoka, Japan) were kept preoperatively 

with overnight fasting but with water freely available. Under 

anesthesia achieved by the intraperitoneal administration of 

sodium pentobarbiturate (5 mg per 100 g body weight; Dai-

Nippon Pharmaceuticals, Co., Ltd., Osaka, Japan), a midline-

laparotomy was performed on these rats. In the PDL group 

rats, pancreata were separated from the loose connective 

tissues, and careful ligation was performed using a silk suture, 

avoiding the occlusion of major vasculatures. The ligation site 

was 1-2 cm away from the spleen, and a substantial amount of 

pancreata with intact CBPD remained downstream of the 

ligation site. Rats were killed 30, 60, 120, or 180 min after 
duct ligation (PDL30ʹ, PDL60ʹ, PDL120ʹ and PDL180ʹ 

groups, respectively), and then pancreata distal to the ligation 

sites were excised. Cardiac blood samples were also collected.  

Control rats received only anesthesia and were then 

killed. Sham group rats received almost the exact same 

procedure as the PDL groups but without ligation, and 

samples were collected at the time points corresponding to 

those of the PDL groups (sham30ʹ, sham60ʹ, sham120ʹ and 

sham180ʹ groups, respectively). Each group comprised 6-9 

rats.  

These procedures were performed in accordance with the 
guiding principles of the National Institute of Health and with 

the permission of the institutional Animal Care and Use 

Committee. 

Biochemical analyses and tissue water content estimation 

Serum samples were collected from centrifuged cardiac 

blood samples. Serum amylase values were determined with 

the aid of Infinity Amylase reagent (Sigma Diagnostics, Inc., 

St. Louis, MO, USA) containing 4,6-ethylidene (G1)-p-

nitrophenyl(G7)-alpha1-D-maltoheptoside, alpha-glucosidase, 
sodium chloride, and buffer (pH 7.0). In brief, serum samples 

were added to the reagent, and the amylase activities were 

calculated using the manufacturer’s protocol based on the 

increased rate of absorption at 405 nm in a spectrophotometer. 

Excised fresh pancreatic tissues were divided for the 

estimation of the water content and the assay of the trypsin 

activity. To estimate the water content, pancreatic tissues 

(wet) were kept in a desiccator until there was no longer any 

change in the weight, and the tissue water content was 

calculated from the tissue weights before and after 

desiccation. For the trypsin assay, pancreatic tissues were 

manually homogenated in 0.001N hydrochloride solution on 
ice. After centrifugation at 10,000 rpm for 10 mins at 4°C, the 

supernatant was added to mixtures of 0.046 M Tris-HCl 

buffer (pH 8.1; with 0.0115 M calcium chloride) and 0.01 M 

p-toluene-sulfonyl-L-arginine methyl ester (Sigma 

Diagnostics, Inc.). The trypsin concentration was calculated 

according to the manufacturer’s instructions from the 

increased rate of absorption at 247 nm in a spectrophotometer.  

Histology 

Sampled pancreatic tissues were fixed in 4% 

paraformaldehyde for routine histology. Paraformaldehyde-

fixed materials were dehydrated with methanol, permeated 

with xylene and then with paraffin, and finally embedded in 

paraffin wax. From tissue paraffin blocks, sections 4 µm thick 

were cut onto silane-coated glass slides. After 

deparaffinization, samples were stained with hematoxylin and 

eosin. Glass slides were observed under an Olympus BX50 

microscope (Olympus Co., Tokyo, Japan), and images were 

acquired through a Fujix HC-2500 digital camera with the 

Photograb software program, version 1.0 (Fuji Photo Film, 
Co., Ltd., Tokyo, Japan). These images were examined for 

evidence of interstitial edema, “focal acinar cell necrosis” (see 

Discussion), interstitial neutrophilic infiltration, and tissue 

necrosis. 

Immunofluorescence 

Fresh pancreatic tissues were embedded in OTC 

compound (Sakura Finetechnical, Co., Ltd., Tokyo, Japan) 
and immersed in liquid nitrogen. From these frozen samples, 

sections 5 µm thick were cut onto silane-coated glass slides 

and fixed with acetone at –20°C. By staining with 4,6-

diamidino-2-phenylindole dihydrochloride hydrate (DAPI, 

300 nM; Molecular Probes, Inc., Eugine, MA, USA) and/or 

Alexa Fluor 633-labeled Phalloidin (1 unit per slide; 

Molecular Probes, Inc.), we performed multiple 

immunofluorescent methods to analyze TJ proteins. We also 

analyzed the adherens junctions (AJs), which consist of JCs. 

We used anti-ZO-1 (goat polyclonal, 2 µg/mL; Santa Cruz 

Biotechnology, Inc., Santa Cruz, CA) and anti-7H6 (mouse 

clone 7H6, 5 µg/mL; American Research Products, Inc., 
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Belmont, MA) antibodies (to examine TJ-associated proteins) 

as well as antibodies against pan-cadherin (goat polyclonal, 4 

µg/mL; Santa Cruz Biotechnology, Inc.) and β-catenin (mouse 

clone E-5, 4 µg/mL; Santa Cruz Biotechnology, Inc.) (AJ-

structural and AJ-associated proteins).  
After blocking non-specific staining with DAKO serum-

free blocking reagent (DAKO Cytomation, Kyoto, Japan), 

slides were incubated in an overnight cocktail of the two 

primary antibodies at 4°C. Then, corresponding Alexa Fluor 

dye-labeled secondary antibodies (Molecular Probes, Inc.) 

were incubated for one hour each. Finally, slides were 

incubated at room temperature for 20 min in a mixture of 

DAPI and/or labeled Phalloidin. Between procedures, glass 

slides were washed 3 times with TBS-T (0.05 M Tris-HCl, 

0.15 M NaCl, pH 7.8, containing 0.1% Triton X). We stained 

rat liver tissue as positive control slides and incubated some 

slides with labeled secondary antibodies without the primary 
antibodies as a negative control. The glass slides were 

observed by confocal laser microscopy (LSM510) using the 

LSM510 software program, version 2.5 (Carl Zeiss, Jena, 

Germany). We acquired 7-9 images from each specimen using 

a C-apochromat 63x/1.2 W Corr objective lens (Carl Zeiss) 

and the multi-track line scanning condition (8-bit depth, 512  

512 pixels, average 8 times [mean method], zoom 1.4). 

Adequate beam-splitter and band-pass filters were selected for 

image acquisition.  

In the pancreata of control and sham groups treated with 

TJ protein antibodies, acinar lumens were highlighted, while 

with AJ-structural and AJ-associated protein antibodies, 

acinar lumens and basolateral plasma membranes of acinar 
cells were stained well. Two of our group (S.O and S.T) 

classified acini as to whether or not the labeled dyes had 

highlighted luminal and/or basolateral plasma membrane 

structures distinctly. We counted the numbers of acini with 

immunofluorescently distinct lumens in the images acquired 

from each specimen and then calculated the proportion 

displaying distinct lumens. 

Electron microscopy 

For electron microscopy, tissues were excised at about 1-

mm3 size, pre-fixed with 2.5% glutaraldehyde for 48-72 h, 

and post-fixed with 1% osmium tetraoxide for 2 h. After 

sequential dehydration with ethanol and propylene oxide, 

samples were permeated and embedded in epon resin. Then, 

ultrathin sections were stained with uranium acetate and lead 

citrate and observed using an H-7100 transmission electron 

microscope (acceleration voltage 75 kV; Hitachi, Ltd., Tokyo, 

Japan). 

We observed each section’s morphology with regard to 

acinar nuclear clumping, dilatation of endoplasmic reticulum 
(ER), vacuolation, loss of microvilli on acinar lumens, and 

misplaced (basolateral) exocytosis. We also estimated the 

frequencies of non-closed, leaky junctions in acinar TJs in 

samples from each group, although TJs were usually closed 

(i.e. plasma membranes of neighboring cells arranged in 

parallel without spaces) [17]. TJs with indistinct plasma-

membrane structures were excluded from the count.  

Statistical analyses 

Statistical analyses were performed using the StatView 

software program, version 5.0 (SAS Institute, Inc., Cary, NC, 

USA). A one-way analysis of variance for the serum amylase 

concentration was performed and followed by a Scheffe F test 

as a post hoc test. The Kruskal-Wallis test for the tissue water 

content analysis and frequency analyses relating to the 

immunofluorescence study were performed and followed by 

the Mann-Whitney U test with Bonferroni correction. Fisher’s 

exact probability test for frequency analyses in electron 

microscopy was also performed. P values less than 0.05 were 

considered significant. 

Results 

Confirmation of the validity of the rat PDL model 

In the present biochemical analysis, the serum amylase 

values were similar among the control, sham groups, and 

PDL30ʹ, PDL60ʹ, and PDL120ʹ groups; however, that for the 

PDL180ʹ group was significantly increased compared with the 

control and sham180ʹ groups (Figure 1A). In the tissue water 

content analysis, the tissue water content ratio of the PDL180ʹ 

group (expressed as a percentage of the content in the control 

group) was significantly greater than the control and sham180ʹ 

group values (Figure 1B). A biochemical analysis of the tissue 
trypsin activity showed no significant differences among the 

groups (data not shown).  
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Figure 1A and 1B: Relationships between the time after 

pancreatic duct ligation and (A) the serum amylase values and 

(B) the tissue water content ratio. Compared to the 

corresponding sham-operated group, samples from the group 

180 minutes after duct ligation displayed significant 
elevations in serum amylase values (A) and the tissue water 

content ratio (B). 

Under light microscopy, the tissue organization was well 

preserved without significant findings in the control and sham 

groups. Interstitial edema and “focal acinar cell necrosis” 

were found rarely in the PDL60ʹ group, but both were evident 

in all samples in the PDL120ʹ and PDL180ʹ groups, along 

with mild neutrophilic infiltration (Figure 2AB). No tissue 
necrosis was observed in any group. Under electron 

microscopy, a small number of acinar cells exhibited 

clumping of nuclear chromatin even in the control and sham 

groups. Some acinar cells displayed mild ER dilatation in the 

PDL60ʹ group, and many cells showed ER swelling in the 

PDL120ʹ and PDL180ʹ groups (Figure 2C). In the acinar 

lumens in some cases in the PDL120ʹ and PDL180ʹ groups, 

loss of microvilli and surface flattening were also seen. 

Misplaced (i.e. basolateral) exocytosis was not observed in 

any specimens. 

 

Figure 2: Histological findings on light microscopy (A,B) 

and electron microscopy (C,D). In the groups 120 and 180 

minutes after duct ligation, marked interstitial edema and 

neutrophilic infiltration (A) and “focal acinar cell necrosis” 

(B) were observed. Under the same conditions, swelling of the 

endoplasmic reticulum was observed ultrastructurally in 

acinar cells (C). Polarization was well preserved in the acinar 

cells, and zymogen granules were located near the apical 
lumens (D). 

Examination of acinar JCs by immunofluorescence and 

ultrastructural methods 

In our immunofluorescence study for TJ proteins, the 

staining patterns for anti-ZO-1 and 7H6 antibodies were quite 

similar in the specimens, but the former was stained more 

distinctly. In the ZO-1 study, 63% to 70% of acini in the 

control and sham groups exhibited distinct acinar lumens, 
although only 26% to 28% of acini in the PDL120ʹ and 

PDL180ʹ groups had immunofluorescently distinct acinar 

lumens (p<0.01; Figure 3). Regarding AJ proteins, the 

staining patterns for anti-pan-cadherin and anti-β-catenin were 

quite similar among the specimens, although the latter stained 

more distinctly than the former. We were able to detect 
distinct immunofluorescence on the luminal and basolateral 

plasma membranes even in the PDL180ʹ group (Figure 4), and 

we noted no significant differences among the groups (data 

not shown). 

 

Figure 3: Immunofluorescent images for the tight junction 

protein ZO-1. Phalloidin (orange) indicates the acinar outline, 

while DAPI (violet) indicates acinar nuclei. In the center of 

acini, anti-ZO-1 antibody (green) highlights the acinar lumens 

(white arrows) in the group 180 minutes after sham-operation 

(A), but such structures were less evident in the group 180 
minutes after pancreatic duct ligation (B). The relationship 

between the time after pancreatic duct ligation and the 

percentage of acini displaying distinct lumens in the ZO-1 

study (C). This percentage was significantly lower in the 

groups 120 min and 180 min after duct ligation than in the 

control and sham groups. 

In our electron microscopic search for non-closed, leaky 

TJs, we counted between 42 and 73 TJs per group in the acini 
of the control and PDL groups. We found leaky TJs in 21.7% 

- 28.9% of acinar TJs in the control (13 of 60), PDL30ʹ (9 of 

48), and PDL60ʹ (18 of 73) groups (Figure 5). However, more 
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than 50% of acinar TJs exhibited leaky morphology in the 

PDL120ʹ (22 of 42) and PDL180ʹ (27 of 53) groups, an 

incidence that was significantly greater than in the other 

groups (control, PDL30ʹ, and PDL60ʹ) (p<0.05). 

 

 

 

Figure 4: Immunofluorescent images for the adherens junction proteins pan-cadherin (A) and β-catenin (B). These antibodies 

highlight the acinar lumens and basolateral membranes of acinar cells even in the group 180 minutes after pancreatic duct ligation. 

 

Figure 5: Ultrastructural images of tight junctions between acinar cells. (A) A tight junction (interrupted arrow) that was closed in 

the group 120 minutes after pancreatic duct ligation. (B) A tight junction that was not closed in the group 180 minutes after 

pancreatic duct ligation. In the non-closed, leaky tight junction, a space (solid arrow) between two plasma membranes arranged in 

parallel was observed. 
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Discussion 

In the opossum model of CBPD obstruction, bile reflux 

into the pancreatic ducts and an elevation in plasma 

cholecystokinin (CCK) concentration are key characteristic 

factors [18-23]. To exclude these factors, for the present study 

we selected the pancreatic duct ligation model. This 

pancreatic duct ligation was expected to exclude the potential 

for bile reflux, and duodenal CCK production could be 

expected to be suppressed by a substantial volume of 

pancreata near the duodenum remaining intact (without 

edema). Thus, the present model might be considered suitable 

for basic research into human acute pancreatitis, such as 
biliary or post-endoscopic retrograde 

cholangiopancreatography pancreatitis, as human acinar cells, 

unlike animal acinar cells, do not have functional CCK 

receptors [24,25]. 

We identified significant increases in both the serum 

amylase value and tissue water content at 180 min, as well as 

morphologically evident intestinal edema at 120 and 180 min 

after PDL. These biochemical and morphological findings are 

compatible with those made in past studies [26,27]. However, 

we consider that these findings (under conditions with no 

tissue necrosis), which were detected at 180 min after PDL, 
may have been due not to an increase in vascular permeability 

but rather one in paracellular permeability among the acini. In 

the present study, we made 3 important findings in our 

immunofluorescence and ultrastructural studies: i) there were 

less distinct acinar lumens, as indicated by TJ proteins (ZO-

1), at 120 and 180 min after PDL than in the control and sham 

groups, ii) there were no changes in AJ proteins (pan-cadherin 

and beta-catenin) up to and including 180 min after PDL, and 

iii) there was an increase in non-closed, leaky TJs at 120 and 

180 min after PDL in the ultrastructural study. These findings, 

observed in an early phase of pancreatitis after PDL, support 

the presence of increased paracellular permeability. Although 
both TJ and AJ alterations in acinar cells can occur (by 

decreased luminal pH from the secreted zymogen granules) in 

the supramaximal segretagogue stimulation model [28], the 

present results exhibiting TJ alteration alone might be a 

reflection of model differences. 

We detected the unique morphology “focal acinar-cell 

necrosis” in a few samples at 60 min after PDL and in all at 

both 120 and 180 mins. We found misplaced exocytotic 

images in no ultrastructural specimens, indicating that this 

acinar change was not true necrosis. “Focal acinar-cell 

necrosis” might therefore be a reflection of derangements of 
inter-acinar cell-cell junctions due to the disruption of the 

normally continuous epithelial lining of acinar cells. In a 

canine duct-hypertension model, the disruption of the 

continuous epithelial lining at the junction between duct cells 

and acinar cells and the deposition of intercellular luminal 

content between acinar cells and the basal lamina have been 

reported [29]. Furthermore, the freeze-fracture method in a 

canine duct-hypertension model showed that some 

morphologic subtypes of TJs in acinar cells were observed 

only in the duct-hypertensive state [30]. Similarly, 

hepatocytes after the bile duct ligation procedure exhibited TJ 

alterations that decreased the colocalization of ZO-1 and 

claudins 1 and 2 and upregulated ZO-2 [31]. These findings 

seem parallel the present results. In obstructive jaundice, TJ 

alteration in the intestine was reportedly restored by bombesin 

and neurotensin [32]. Such neurotransmitters might also 

improve TJ alteration in the pancreas.  
In conclusion, acinar TJ alterations occurred in an early 

phase in a rat PDL model. This change is considered likely to 

contribute to interstitial edema formation and might be 

expected to be seen in human biliary or post-endoscopic 

retrograde cholangiopancreatography pancreatitis. 
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