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Introduction 

Precision cancer medicine is driven to match individual 

patients with treatment(s) that have the highest probability of 

decreasing tumor size or eradicating the patient’s cancer [1]. 

Models designed to predict an optimal response rate are 

frequently derived from genomic profiles of patient tumors. 

These data include somatic alterations, such as, point 

mutations, deletions, amplifications, translocations, and 

chromosomal abnormalities that assist in matching a drug’s 

capabilities to a specific molecular profile for a patient’s 

benefit.  

Despite the potential value, the complexity of genomic 

and drug sensitivity data poses challenges to identifying 

robust statistical relationships between genes and drugs. To 

overcome these impediments, a variety of computational 

approaches have been developed [2-12]. Among the most 

prominent, are machine learning (ML) algorithms that attempt 

to model regular, informative features of the data, affording a 

high-level abstraction of information. The majority of 

predictive modeling approaches rely on single algorithmic 

methods and each has distinct advantages and degeneracies 

typically resulting in accuracies of between 70-85%. One 

strategy to potentially improve the performance of predictive 

models is to combine multiple machine-learning methods (e.g. 

[13]). In the present study, we report on the development and 

validation of an ensemble-based machine-learning algorithm 

(ELAFT) that combines the strengths of a number of diverse 

ML approaches (i.e., support vector machines, random forest 

classifier, K-nearest neighbor classifier, and logistic 

regression classifier) with a correlation-based feature selection  

approach (feature titration) to predict anti-cancer drug 

response with high accuracy (>90%).  

 

 

 

Materials and Methods  

National Cancer Institute (NCI) 60 Datasets 

The National Cancer Institute panel of 60 human cancer 

cell lines (NCI-60) includes cell lines from 9 different types of 

cancers (lung, skin, renal, colon, ovarian, breast, leukemia, 

central nervous system (CNS), and prostrate) was used in our 

study (Figure 1a). The microarray gene expression data for 

these cell lines were obtained from the National Center for 

Biotechnology Gene Expression Omnibus [14] 

(Supplementary Table 1) and drug sensitivity profiles for 

seven drugs (carboplatin, paclitaxel, docetaxel, cisplatin, 

gefitinib, doxorubicin, and gemcitabine) were obtained from 

National Cancer Institute [15] (Supplementary Table 1, Figure 

1b). The preprocessing of the gene expression data was 

performed as previously described [16]. The probe level 

expression data were used as features to build the predictive 

models.  

The proteomics data for NCI-60 cell lines came from a 

recent study [17]. The dataset consisted of over 3,100 

SwissProt proteotypic proteins and their systematic 

quantification of pathway activities obtained using pressure 

cycling technology and SWATH mass spectrometry 

(Supplementary Table 1). The quantifications of these 

proteins were used as features to build models.  

The metabolomics data for NCI-60 were obtained from a 

recent study [18]. The data consisted of intracellular metabolic 

profiles that were used as features to build the model 

(Supplementary Table 1). The metabolomics dataset consisted 

of metabolic profiles for all the NCI-60 cancer types except 

for Leukemia. Thus, for assessments where the metabolomic 

dataset was involved, only 53 cell lines were used rather than 

59 used in all gene expression and proteomics evaluations.  
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Figure (1a): National Cancer Institute (NCI)-60 Cell line panel. The panel consists of cell lines from nine cancer types (lung, 

skin, renal, colon, ovarian, breast, leukemia, central nervous system (CNS), and prostrate). The number of cell lines per each 

cancer type is indicated in the brackets ranging from two prostrate cancer cell lines to nine lung cancer cell lines; (1b): A box plot 

of the GI50 (Growth inhibitory 50%) negatively transformed response rate (y-axis) for each drug (x-axis) on NCI-60 cell lines; 

(1c): Graph showing carboplatin drug response curve on NCI-60 cell lines. The GI50 (Growth inhibitory 50%) negatively 

transformed response rate for the cell lines are shown on the y-axis. The plot shows the “two-class” labeling of the drug response. 

In this case, the cell lines with drug response above mean value are considered as “sensitive” to the drug (orange dots) and those 

below the mean are “resistant” to the drug (green dots). The mean value is shown by the horizontal blue dotted line; (1d): The 

prediction accuracy, precision and recall of ELAFT models on NCI-60 cell lines using gene-expression data. Models are 

generated for each of the seven drugs and the blue, orange and gray bars represent accuracy, precision and recall of each of these 

models applied on gene-expression dataset. The prediction accuracy levels of these models ranged from 86-100% with an average 

of 92%. Precision levels ranged from 33-100% with an average of 85.5% and recall ranged from 87-100% with an average of 

98%. 

Cancer Cell Line Encyclopedia (CCLE) and DepMap 

datasets 

CCLE and DepMap datasets were downloaded from the 

DepMap database [19]. We used microarray datasets to allow 

adequate comparison to the ovarian cancer datasets that were 

analyzed later in the human patient studies (see below). Two 

datasets were obtained: one consisting of gene-expression 

data for 1037 cell lines from nineteen different cancer types, 

the other consisting of drug sensitivity profiles of 578 cell 

lines for eight drugs: carboplatin, paclitaxel, docetaxel, 

cisplatin, gefitinib, doxorubicin, gemcitabine and topotecan. 

For the gene expression dataset, DepMap provides RNA seq 

and microarray expression datasets. Not all the cell lines that 

had gene-expression data had drug sensitivity profiles and 

vice versa. Matching for both and filtering out cancer types 

that had less than ten cell lines resulted in 499 cell lines 

representing 15 different cancer types (skin, bladder, bone, 

brain, breast, colon, uterine, esophageal, gastric, head and 

neck, kidney, liver, lung, ovarian, pancreatic; Supplementary 

Table 2). The preprocessing of gene expression data was 

performed as previously described [16]. 

Ovarian Cancer patient data 

Gene expression and drug response data for ovarian 

cancer (serous papillary) patients were obtained from the 

Ovarian Cancer Institute. Informed patient consents were 

obtained and approved under appropriate Georgia Institute of 

Technology Institutional Review Board protocol (H14337). 

Samples of primary tumors collected from 23 ovarian cancer 

patients at Northside Hospital (Atlanta) were snap frozen in 

liquid nitrogen within one minute of surgical removal and 

transferred to the lab for laser capture microdissection of 

cancer cells and subsequent microarray gene-expression 

analysis (Affymetrix, U133Plus 2.0 arrays, ThermoFisher 
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Scientific) as previously described [20,21]. These microarray 

datasets are available at National Center for Biotechnology 

Gene Expression Omnibus (GSE38666, GSE112798).  

Gene- expression microarray (.CEL) files were 

normalized one by one against the DepMap gene-expression 

microarray data using standard quantile normalization [22,23] 

and using the mean of each probe. Patient responses to 

administered chemotherapies were monitored by measurement 

of CA-125 values prior to and after the treatment. Patients 

were characterized as responsive to treatments if their 

respective CA-125 values dropped below normal values (<21) 

(Supplementary Table 3) 

Labeling of the drug response data 

The drug response data (GI50 – Growth Inhibitory 50%) 

for seven drugs for NCI-60 cell lines and eight drugs for 

DepMap cell lines (Supplementary Tables 1 and 2) were 

transformed such that higher the number the more sensitive 

the cell line was to the drug administered. To assign a drug 

response label to the cell lines, three different methods were 

employed. The first method consisted of assigning two labels 

(sensitive and resistant, two-class classification). Cell lines 

with drug responses above the mean were designated as 

sensitive while those below the mean were designated as 

resistant (Supplementary Figure 1a, 1b). A second more 

stringent method again assigned two labels (sensitive and 

resistant) but cell lines displaying GI50 between 0.5 standard 

deviation above and below the mean were excluded from the 

training set but included in the test set (two-class separated 

labeling). The third method, a 3-class method, included the 

cell lines with GI50 values between the 0.50 standard 

deviation above and below the mean but labeled these as 

neutral class. All three labeling methods were separately 

evaluated to build and identify the optimized models 

(Supplementary Figure 2).  

Feature selection for machine learning algorithm 

Three different feature selection methods were 

evaluated. The first included all gene expression probes 

(27920 for NCI-60), or all the protein levels (3171 for NCI-

60), or all the metabolic values (2182 for NCI-60) as features, 

A second method involved selecting features based on 

correlation and feature titration. A third method applied 

recursive feature elimination in the selection of a set of most 

informative features as previously described [24]. The 

correlation-based feature selection method was found to 

generate the highest accuracy and was utilized in the final 

method (Supplementary Figure 3). 

Recursive Feature Elimination based feature selection was 

built as below 

(1) Initialization 

o Training cell lines: X 0 = [x1,x2,…,xm]T 

o  Drug response class label: y = [y1,y2,…,ym]T 

o  Current feature set: s = [1,2,…, n] 

o  Feature ranked list: r = []. 

(2) Feature ranking and training 

• Repeat the following steps until s = []. 

• Create training data matrix with good 

features: X = X 0(:, s). 

• Train classifier 

▪ α = LR-train (X, y), KNN-train(X, y), 

RF-train(X, y),SVM-train(X, y) 

•  Compute feature weight: w = ∑k α k y k x k. 

•  Compute feature ranking criteria: c i = (wi)2. 

•  For all i find features with minimum rank: f = 

argmin(c)  

•  Update feature ranked list: r = [s(f), r]. 

•  Remove features with smallest ranking 

criteria: s = s(1 : −1, f + 1 : length(s)) 

(3) Feature selection and prediction:  

• Feature ranked List r.  

• In each loop, the feature(s) with minimum 

ranking criteria (c i) will be removed. The 

classifier (e.g., logistic regression, support vector 

machine, etc.) then retrains on the remaining 

features to obtain the new feature ranking. By 

training the classifier with these ranked feature 

subsets, evaluating these for prediction accuracy, 

retraining to get new feature ranked list, an 

optimal feature subset that optimizes prediction 

accuracy was obtained.  

Correlation feature titration based feature selection was 

built as below 

(1) Initialization 

• Training cell lines: X 0 = [x 1,x 2,…,xm]T 

•  Drug response class label: y = [y 1,y 2,…,y m]T 

• Current feature set: s = [1,2,…, n] 

•  Feature ranked list: r = []. 

(2) Feature ranking and training 

•  Repeat the following steps until s = []. 

•  For all i, in s = [1,2,…, n] 

o Compute Pearson correlation coefficient 

▪ r = [
cov(xy)

σxσy
]
T

 

o Compute feature ranking criteria:  

ci = abs(r i) 

• Find features with maximum rank:  

f = argmax(c)    

• Add features with max ranking criteria:  

r = r(1 : +1, f - 1 : length(r)) 

•  Update feature ranked list: r = [s(f), r] 

•  Create training data matrix with good 

features: X = X 0 (:, r). 

•   Train classifier 

o  α = LR-train (X, y), KNN-train (X, y), RF-

train(X, y),SVM-train(X, y) 
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(3) Feature selection and prediction:  

o Feature ranked List r.  

o In each loop, the feature(s) with maximum 

ranking criteria (ci) will be added. The classifier (e.g., 

logistic regression, support vector machine etc) then 

retrains on these features to obtain the new prediction 

accuracy. By training the classifier with these ranked 

feature subsets, evaluating these for prediction 

accuracy, an optimal feature subset that optimizes 

prediction accuracy was obtained.  

Machine-Learning algorithm(s) 

 Five different machine learning algorithms, Support 

Vector Machines (SVM), Random Forest classifier (RF), K-

Nearest Neighbor classifier (KNN), Logistic Regression 

classifier (LR) and ensemble (combined predictions of SVM, 

RF, KNN, and LR) classifier, were tested. The algorithms are 

implemented with default parameters in the python scikit-

learn package (https://scikit-learn.org/stable/). Radial basis 

kernel with default settings was used for SVM. An ensemble 

classifier that was constructed as a collection of the above 

four classifiers working as a single classifier by taking the 

predicted probabilities of the above four classifiers and 

combining them to determine the final prediction for the test 

sample. Of these, the ensemble classifier provided more 

robust results (Supplementary Figure 4). 

 

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖𝑗=1𝑚𝑤𝑗 𝑝𝑖𝑗  
• p is predicted probability of the classifier (SVM, RFC, 

KNN, LGR) 
• wj is the weight assigned to the jth classifier, uniform 

weights are used 
• i is class label (e.g., two class label, sensitive or 

resistant) 

Validation Methods 

Leave-one-out-cross validation (LOOCV) was used to 

validate model performance and has been described 

previously [25]. Briefly, LOOCV trains the model on all cell 

lines except one, and then tests it on the one left [25]. It then 

repeats this for all the cell lines finally generating accuracy, 

precision and recall metrics.  

 Success Metrics 

Model accuracy, precision, and recall were used to 

evaluate performance. Accuracy is defined as the fraction of 

cancer cell lines the algorithm correctly predicted the drug 

response (sensitive or resistant) compared to their actual 

response observed in their drug sensitivity research studies. 

Precision is defined as the fraction of the cell lines the model 

accurately predicted as sensitive to the drug response over all 

cell lines it predicted as sensitive. Recall is defined as the 

fraction of the cell lines model accurately predicted as 

sensitive to drug response among all the cell lines that were 

sensitive (Figure 2). 

 
Figure 2: The success criteria of precision, recall and accuracy were employed to measure the performance of the ELAFT models 

built on NCI-60, DepMap and ovarian cancer datasets. The figure shows the formulas used for calculating these metrics. In each 

of the model assessments, the predicted responses were compared to the observed responses and assigned a prediction category of 

true positive (TP), true negative (TN), false positive (FP) and false negative (FN) with TP being both observed and predicted 

response are responsive/sensitive, TN being both observed and predicted response are nonresponsive/resistant, FP being observed 

response is non responsive/resistant and predicted response is responsive/sensitive, FN being observed response is 

responsive/sensitive and predicted response is non responsive/resistant). 

Final Design 

The final design consisted of five steps: cancer type 

(the data used to build models), algorithms (the machine-

learning algorithms evaluated), features (the features used in 

machine-learning algorithms), validation (the validation 

techniques employed) and the final step of the success metrics 

used for comparisons to obtain the optimized algorithm. At 

each step, different alternate methods (explained in the above 

sections) and the ones selected at each step through running 

multiple simulations (i.e., Cancer-specific dataset, ensemble 

algorithm, correlation based feature selection, LOOCV, 

accuracy/precision and recall) went into the final optimized 

algorithm (Figure 3a). 

 More than two million simulations were run to optimize 

the different components of the machine-learning algorithm to 

develop the final ELAFT model. ELAFT models were then 

used to predict the response of ovarian cancer patients (Figure 
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3b) based on their genetic profile to eight different drugs from 

which an effective drug from which that provided the optimal 

response is obtained together which patients response to each 

of the eight drugs. 

 

Figure 3a 

 

 

Figure 3b 

 
Figure (3a): Summary of methodology. The design consisted of five steps: Cancer type (the data used to build models), 

Algorithms (the machine learning algorithms evaluated), Features (the features used in building machine learning algorithms), 

Validation (the validation techniques employed) and the final step of the success metrics used to obtain the optimized algorithm. 

As can be seen in the figure, at each step different alternate methods were employed during the redesign and the final optimized 

algorithm is the one built based on the “green” text in each of the steps. More than two million simulations were run to optimize 

the different components of the machine-learning algorithm to develop the final algorithm; (3b): Overview of the ELAFT 

algorithm and how it enables personalized cancer medicine. The models for 15 cancer types are built using gene-expression data 

from 27920 probes from 499 DepMap cell lines combined with the response profiles of these cell lines to eight different 

chemotherapy drugs. These models are used to predict the response of a patient based on their genetic profile to eight different 

drugs from which an effective drug providing the optimal response is identified. 
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Results 

ELAFT predicts cancer cell line response to drugs with 

high accuracy 

 Our initial models were built using gene expression and 

drug sensitivity profiles across nine cancer types (lung, skin, 

renal, colon, ovarian, breast, leukemia, prostate, and central 

nervous system (CNS)) represented in the National Cancer 

Institute-60 (NCI-60) panel of human cancer cell lines (Figure 

1a). 

 In this initial study, predictive models were generated for 

each of seven drugs (carboplatin, cisplatin, paclitaxel, 

docetaxel, gemcitabine, doxorubicin, gefitinib). Cell lines 

with negatively transformed GI50 (Growth Inhibitory 50%) 

values (Figure 1b) above the mean were designated as drug 

sensitive while those below the mean, as drug resistant 

(Figure 1c). In all cases, cell lines used to build the models 

were distinct from those used in testing the models. Details on 

the development and optimization of the algorithm are 

presented in Materials & Methods.  

 We began by generating pan-cancer models utilizing gene-

expression values and drug response profiles for all 59 cell 

lines comprising the NCI-60 panel. Individual models were 

built for each of the seven drugs and the predictive accuracies 

determined by leave-one-out-cross validation (LOOCV). 

Accuracies were found to vary across the seven drugs ranging 

from 100% for doxorubicin to 87% for carboplatin and 

gefitinib (Figure 1d), with an average accuracy across all 

drugs of 92%. On average, recall was higher (98%) than 

precision (86%) (Table 1). 

 

Table 1: A table summarizing the results of ELAFT models on the gene-expression dataset on NCI-60 cell lines. Each row is a 

drug and the columns represent prediction performance levels of each of these models measured by “accuracy”, “precision” and 

“recall” values. As can be seen an average accuracy of 92% is achieved. 

 

 

The predictive accuracy of the responsiveness of NCI-60 

cells to drugs is dependent upon the type of data 

(proteomic, metabolomic, or gene expression) used in 

model building 

 Although most ML-based predictive models currently 

employ gene-expression (e.g., microarray, RNA-seq) data in 

model building, a variety of high-throughput technologies 

have and continue to be developed. Since, in addition to gene-

expression data, both proteomic [17] and metabolic [18] 

profiling data are available for the NCI-60 cell lines, we were 

interested in exploring the relative predictive accuracies of 

models built using these alternate omic datasets. All model 

building and evaluation methods were as described using 

gene-expression data.  

 As was the case for models built using the gene-expression 

data, accuracies were found to vary across the seven drugs for 

models built with both the proteomic and metabolomic data 

(Figures 4a and 4b). Average accuracy remained highest for 

models built using the gene-expression data (92%) followed 

by the metabolic data (87%) and the proteomic data (82%) 

(Figure 4c). While Recall was, on average, slightly higher 

(78%) than Precision (76%) for models built using the 

proteomic data, the opposite was true for the metabolomic 

data where Precision was significantly higher (97%) than 

Recall (84%) (Figure 4d). Indeed, Precision was 100% for all 

drug models built using the metabolic data with the only 

exception being doxorubicin. 

Tumor-specific ELAFT models predict drug response of 

cancer cell lines with high accuracy 

While the NCI-60 dataset is useful in exploring the 

potential impact of different types of omic data on the 

predictive accuracy of ML-based models, its overall utility is 

limited due to the relatively small number of cell lines and 

cancer types represented in the panel. For this reason, we 

elected to further evaluate our model using the Cancer Cell 
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Line Encyclopedia’s (CCLE) DepMap dataset comprised of 

499 cell lines representing 15 cancer types (bladder, bone, 

brain, breast, colon/colorectal, endometrial/uterine, 

esophageal, gastric, head/neck, kidney, liver, lung, ovarian, 

pancreatic, skin). Because of the large number of cell line data 

available for each cancer, we were able to build individual 

predictive models for each of eight drugs and 15 cancers. 

Predictive accuracies range from 73% (gemcitabine for lung 

cancer) to 100% (paclitaxel and cisplatin for kidney cancer; 

gemcitabine for bone cancer; topotecan for esophageal cancer) 

with an overall average accuracy of 88% for all eight drugs 

across the 15 cancers (Table 2 and Supplementary Table 4). 

Overall precision across all drugs and cancer types (92%) 

was slightly higher than recall (88%), with many cancers 

displaying precisions of 100% across several drugs. Recall 

values also varied across drugs and cancers ranging from 78% 

to 100% (Table 2 and Supplementary Table 4).  

 In contrast to the overall high predictive accuracies 

associated with the cancer-specific models, models built using 

the entire combined DepMap dataset (pan-cancer model), 

resulted in relatively low overall predictive accuracy (66%), 

precision (67%) and recall (68%) for all drugs (Table 3). 

These values are considerably lower than what we observed 

using the NCI-60 dataset (see above) possibly attributable to 

the increased diversity of cancer types comprising the 

DepMap dataset. 

ELAFT models predict response of individual ovarian 

cancer (OC) patients to standard-of-care therapies with 

high accuracy 

To assess the potential clinical utility of the ELAFT 

model, we utilized a human ovarian cancer dataset composed 

of gene-expression levels of 23 individual patient tumors 

combined with patient responses to chemotherapeutic 

treatments. We generated predicted responses to each of eight 

drugs previously employed in the treatment of OC using 

models developed using the DepMap dataset (see above). 

Standard-of-care chemotherapy for OC patients typically 

involves treatment with multiple drugs, most commonly, 

carboplatin and paclitaxel. In only one instance (Patient 992, 

Table 4) was a patient in our dataset treated with a single drug 

(Topotecan) allowing for straight forward testing of our 

prediction (patient predicted and observed to not respond to 

Topotecan treatment- True Negative (TN)).  

 
 

Figure (4): The results of ELAFT models on the proteomics dataset on NCI-60 cell lines. (4a): Each row is a drug and the 

columns represent prediction performance levels of each of these models measured by “accuracy”, “precision” and “recall” 

values. The prediction accuracy levels of these models ranged from 80-100% with an average of 86.7%. Precision levels ranged 

from 82-100% with an average of 97.4% and recall ranged from 50-100% with an average of 83.8%; (4b): The results of ELAFT 

models on the metabolomics dataset on NCI-60 cell lines. Each row is a drug and the columns represent prediction performance 

levels of each of these models measured by “accuracy”, “precision” and “recall” values. The prediction accuracy levels of these 

models ranged from 71-93% with an average of 81.6%. Precision levels ranged from 0-100% with an average of 75.8% and recall 

ranged from 0-100% with an average of 78.32%; (4C): Graph showing the prediction accuracy (%) comparisons of ELAFT 

models built using proteomics, metabolomics, gene expression, gene expression + proteomics, gene expression + proteomics + 

metabolomics as features in the models. Gene expression features provided better prediction accuracy (92%) followed by 

proteomics (87%) followed by metabolomics (82%). Combining gene expression and proteomics features together improved 

prediction accuracy marginally; (4d): Graph showing the prediction accuracy comparisons of ELAFT models for each of the 

drugs built using proteomics, metabolomics, gene expression, gene expression + proteomics, gene expression + proteomics + 

metabolomics as features in the models. Even at a individual drug level, Gene-expression features provided better prediction 

accuracy (e.g., carboplatin 87%) followed by proteomics (e.g., carboplatin 80%) followed by metabolomics (e.g., carboplatin 

79%). Combining gene expression and proteomics features together improved prediction accuracy marginally. 
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Table 2: The results of ELAFT models on DepMap cell lines using the gene-expression dataset as features. These results are for 

paclitaxel drug response with models built with data from specific cancer cell line types (Individual cancer model). Each row is a 

cancer and the columns represent prediction performance levels of each of these models measured by “accuracy”, “precision” and 

“recall” values. As the results show, the models built on specific cancer types are more than 20% accurate over models built on all 

cancer types (compare to results in Table 3). The prediction accuracy levels of these cancer specific type models ranged from 80-

100% with an average of 88%. Precision levels ranged from 80-100% with an average of 92% and recall ranged from 78-100% 

with an average of 88%. The prediction performance metrics for other drugs are provided in Supplementary Table 4. 

Cancer Type Accuracy Precision Recall 

Bladder Cancer 83.33 83.33 92.31 

Bone Cancer 93.33 100.00 85.71 

Brain Cancer 82.50 88.24 85.00 

Breast Cancer 92.31 92.86 92.86 

Colon/Colorectal Cancer 82.86 86.67 88.24 

Endometrial/Uterine Cancer 95.45 100.00 90.91 

Esophageal Cancer 86.96 90.00 81.82 

Gastric Cancer 90.48 100.00 77.78 

Head and Neck Cancer 88.89 85.71 92.31 

Kidney Cancer 100.00 100.00 100.00 

Liver Cancer 85.71 91.67 92.31 

Lung Cancer 79.63 80.36 82.14 

Ovarian Cancer 86.84 90.48 86.36 

Pancreatic Cancer 86.49 93.33 83.33 

Skin Cancer 88.37 93.33 84.21 

Average 88.21 91.73 87.69 

 

Table 3: The results of ELAFT models on DepMap cell lines using the gene-expression dataset as features. These results are for 

drug response with models built with data from all cancer cell line types (pan-cancer model). Each row is a drug and the columns 

represent prediction performance levels of each of these models measured by “accuracy”, “precision” and “recall” values. As the 

results show, the models built on all cancer types is 20% less accurate than the models built on specific cancer types (compare to 

results in Table 2). The prediction accuracy levels dropped dramatically to an average of 66%, with precision and recall of 68%. 

 Drugs  Accuracy Precision Recall 

Carboplatin 64.39% 65.04% 81.54% 

Cisplatin 63.84% 63.99% 68.71% 

Docetaxel 69.19% 71.96% 60.69% 

Doxorubicin 62.55% 67.16% 39.76% 

Gefitinib 73.62% 74.63% 83.01% 

Gemcitabine 65.68% 64.42% 75.00% 

Paclitaxel 63.28% 65.49% 59.63% 

Topotecan 67.34% 67.49% 74.55% 

Average 66.20% 67.50% 68.46% 

In those cases where patients were observed to positively 

respond to the combination therapies, the prediction was 

scored as “true positive” (TP) if the patient was predicted to 

respond to at least one of the administered drugs (e.g., patients 

242, 367 and 588). Conversely, in cases where patients were 

observed to not respond to the combination therapy, the 

prediction was scored as “false positive” (FP) if the patient 

was predicted to respond to at least one of the drugs (e.g., 

patients 286 and 1012). Instances where the patient is both  

predicted and observed not to respond to the combination 

therapy are scored as “true negative” (TN) (e.g., patients 272 

and 545) while cases where the patient responded to the 

combination therapy but is predicted not to respond to either 

of the administered drugs the prediction was scored as “false 

negative” (FN), although no false negatives were found in our 

dataset. Overall predictive accuracy across the 23 patients was 

91% with a precision of 89% and recall of 100%.  
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Table 4: Patient-by-patient analysis of ovarian cancer patients. Starting from the left and going right, the first column is the ID 

number assigned for each patient, the second column lists the drugs given to each patient (Carbo for carboplatin, Taxol for 

paclitaxel, Cis for cisplatin, GEM for gemcitabine), the third column is the observed response for each patient, as measured by 

CA-125 levels (R for responsive, NR for Nonresponsive) . The next eight columns are what the algorithm predicted the response 

would have been if the drug in that column was administered. The cells highlighted in blue are the predictions the algorithms 

made for the drugs that were administered for the patient. The column after the predictions for each drug is the final prediction 

that is based on the predicted response of the combination therapy given to the patients (cells in blue). This final predictive 

response is computed as responsive if at least one of the administered drugs is predicted as responsive, and called as 

nonresponsive otherwise. These final predicted responses were compared to the observed responses and given a prediction 

category of true positive (TP), true negative (TN), false positive (FP) and false negative (FN) as shown in the final column(TP = 

both observed and predicted response are responsive, TN = both observed and predicted response are nonresponsive, FP = 

observed response is nonresponsive and predicted response is responsive, FN = observed response is responsive and predicted 

response is nonresponsive). There are only two incorrect predictions, both of which are false positives (red colored text in the final 

column, patients 286 and 1012). 

Discussion 

It is now widely acknowledged that cancer is a highly 

complex disease and that, as a consequence, patients with 

even the same cancer type will often respond differently to the 

same therapeutic treatment [26]. A major goal of personalized 

cancer medicine is to accurately predict a patient’s response to 

alternative therapeutic drugs/treatments based upon genomic 

profiles of tumor tissue biopsies thereby enabling selection of 

optimal therapeutic treatments for each individual patient 

[27]. 

Accurate predictions in science, including medical 

science, are generated in one of two ways [28]: If the cause 

and effect relationship(s) underlying a specific disease is 

known, then a specific diagnosis and treatment can be 

accurately predicted. While considerable progress in 

understanding the cause and effect relationships underlying 

some cancers has been made in recent years (e.g., [29,30], the 

extent of this understanding currently remains limited, thus 

far, resulting in relatively few examples of highly effective 

targeted gene therapies (e.g., [31]). A second way in which 

scientific predictions have and continue to be made is based 

on previously observed highly correlated trends. For example, 

many traditional chemotherapeutic drugs currently in use were 

originally identified through trial-and error screening and not 

based upon rational design [32]. 

Correlative-based predictions have experienced a 

resurgence in recent years with the development of machine 

learning (ML)-based methods to efficiently look for 

significant correlations embedded within large datasets. In the 

area of personalized medicine, ML-based approaches are 

being developed to potentially identify highly significant 

correlations between “omic” profiles (e.g., genomic, 

proteomic and/or metabolomic) of various types of cancers 

and to correlate these profiles with the therapeutic efficacy of 

drugs to kill the cancer cells or to significantly arrest their 

growth. Based upon identification of such correlations, 

models can be established to predict optimal drug treatments 

for individual cancer patients based on the “omic” profiles of 

their tumors without full knowledge of the underlying 

molecular mechanisms involved.   

 To date, a number of ML-based models have been 

developed for the prediction of optimal responses of cancer 

cell lines to drugs. A variety of computational approaches 

have been taken [e.g., regression methods (e.g., [33], random 

forests (e.g., [12]), modified rotation forest (e.g., [34]), 

support vector machines (e.g., [35]), deep learning and/or 

transfer learning (e.g., [36-39]) with reported predictive 

accuracies ranging from 70-85%. The predictive accuracy 

(>90%) of our ELAFT models compares favorably with these 

earlier studies, particularly in light of the fact that the ELAFT 

predictive models were developed and tested over fifteen 
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distinct cancer types incorporating data derived from 499 

independent cell lines.  

To evaluate the potential clinical accuracy of our ELAFT 

models to predict the responsiveness of cancer patients to 

various chemotherapeutic drugs, we employed a previously 

established dataset comprised of gene expression profiles 

(microarray) and drug responsiveness (based on observed 

changes in CA-125 levels) of ovarian cancer patients to 

treatments of seven chemotherapeutic drugs (carboplatin, 

cisplatin, paclitaxel, topotecan, gemcitabine, docetaxel, 

doxorubicin) administered either singularly or in combination 

to 23 ovarian cancer patients (Table 4). Predicted responses to 

each of these drugs were made based on ELAFT models 

developed using the DepMap dataset. Comparisons of these 

predictions with observed patient responses resulted in an 

overall predictive accuracy 91% with a precision of 89% and 

recall of 100%. While these results are highly encouraging, 

additional analyses of larger and more diversified cancer 

datasets are currently underway to fully evaluate the potential 

clinical utility of ELAFT as a useful tool in the treatment of 

cancer patients.  
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