
Kumaresan P.K., J. Harmoniz. Res. Eng. 2017, 5(3), 127-132

 www.johronline.com 127 | P a g e

For Correspondence:
pkkumaresan@hotmail.com
Received on: June 2017
Accepted after revision: July 2017
Downloaded from: www.johronline.com

ISSN 2347 – 7393

1. Introduction: We are able to display a binary
tree in the inorder preorder and postorder form.
Binary tree is either empty or consist of a
vertex, called root, together with two disjoint
binary tree called left sub-tree and right sub-tree.
There are three ways of traversal of a binary
tree, preorder, inorder and postorder. Traversing
with the following sequence, left sub-tree, Root
and right sub-tree, Inorder form of binary tree is
formed. Similarly post order of binary tree is
formed for traversal, having the sequence left

sub-tree, right sub-tree and the root.
To do it, at first we fetch one by one element
from the left side of the preorder and then we
search the position of that element in the inorder
form, then break the link list into to parts and
consider it as left and right child. Again the left
and right child is treated as new inorder form,
individually.
After creation of binary tree in computer
memory, we are going to give a tree like view of
an already created binary tree that is a graphical
representation of a binary tree. Depending on the
level of each node in the binary tree and
sequence of nodes in inorder traversal of the
binary tree, position of each node is calculated
for plotting the node with respect to the graph
paper. After calculation of position of each node,
for each two nodes, pairs are created such that

Abstract: Depending on three different sequences of traversal of a binary tree, we get its preorder,
postorder and inorder form. Similarly depending on preorder or postorder along with inorder, the
binary tree can be formed. In this paper, we try to implement, through coding a binary tree is formed
physically not virtually in computer memory and also give a realistic view of a binary tree, already
created in computer memory. Using inorder and preorder traversal of binary tree and takes the value of
the level of the tree we are able to graphically represent any binary tree.

Keywords: Binary Tree, Inorder, Preorder, Link List, Structure Pointer, Recursive Function, Data
Structure.

 Journal Of Harmonized Research in Engineering
 5(3), 2017, 127-132

INORDER AND PREORDER TRAVERSAL & DISPLAY OF EXISTING BINARY TREE IN
COMPUTER MEMORY

P K Kumaresan

Professor Computer Science and Engineering, VMVK Engineering College
Vinayaka Missions University, Salem 636308 Tamil Nadu

Original Research Article

Journal Of Harmonized Research (JOHR)

Kumaresan P.K., J. Harmoniz. Res. Eng. 2017, 5(3), 127-132

 www.johronline.com 128 | P a g e

they are having parent-child relationship. Lines
are drawn between positions of two nodes in a
pair.
Section 2 represents the algorithm for creation of
binary tree from the correct inorder and preorder
traversal and graphically representation of
binary tree. To illustrate the algorithm more
clearly an implementation is shown in section 3.
Result of the execution of an example is shown
in section 4. Section 5 analyses the concept. A
conclusion is drawn in section 6.
2. The Scheme: In this section, algorithm of
physically creation binary tree from given
inorder and preorder form is described. For it a
special kind of node, structure of which show is
figure 2.1, is designed.

Section 2.1 and 2.2 describe the way to create a
binary tree in computer memory from inorder
and preorder traversal. Section 2.3 and 2.4
define the process for representing the binary
tree with a realistic view.
2.1 Formation of binary tree from inorder
and preorder traversal: Only from inorder and
preorder traversal of the binary tree, the
corresponding tree will be constructed. To
construct the binary tree, following steps are
used.
Step 1: A link list is created having first node as

ROOT and same sequence, inorder form.
Step 2: Call the function, named b_tree, defined

in section 2.2 with ROOT as passing
argument.

Step 3: Now Binary tree is formed. The root
node of which is set as ROOT.

2.2 Defining A function, Named b_tree():
After creating the link list with the same
sequence of inorder traversal, the following
steps are used to corresponding binary tree that
is in function form.

Step 1: Start function, named b_tree taken an
argument h as a first node of link list.

Step 2: If frist element of preorder has already
considered, next element is kept into E.
Otherwise first element is kept into E.

Step 3: Element E is reached the link list,
starting with h node.

Step 4: If E is found in link list, say in p node
then following 4 steps are followed.
1. Link list is broken into two parts.
2. Making link list left position of p

node is kept as left child and right
position is kept as right child.

3. Call b_tree with first node of link list,
kept left child of p as argument.

4. Call b_tree with first node of the link
list kept as right child q as argument.

Step 5: End function.
2.3 Placing for every node of a binary tree
properly: This is the first part of the total
algorithm that calculates and puts each node in
their proper position through the following
steps.
Step 1: Start function to traverse all nodes of the

created Binary tree.
Step 2: Assign a column value of each node with

the position of particular node in inorder
traversal of the binary tree.

Step 3: Assign row value of each node with its
corresponding level.

Step 4: After counting the maximum co-ordinate
along X and Y axis of the graph paper or
for here computer screen, two arbitrary
integer variable r_gap and c_gap are
respectively assigned with integer part of
maximum co-ordinate along Y-
axis÷(total depth of the tree+1) and
maximum co-ordinate along X-
axis÷(total number of nodes+1).

Step5: Print the node in its corresponding
position, calculate with (row×
r_gap,column× c_gap).

Step 6: Call the function, named “drawline”,
defined in the section 2.4 with root node
of the binary tree.

2.4 Defining a function, named drawline():
For a complete tree like view connection
between each parent node and child node is
made through drawing lines with following steps
which is recursively called.

Left Child Right Child

Point to the

Next Node

Data

Figure 2.1: Structure of a Node

Kumaresan P.K., J. Harmoniz. Res. Eng. 2017, 5(3), 127-132

 www.johronline.com 129 | P a g e

Step 1: Start function, named “drawline”, taking
an argument, R as root node of a binary
tree.

Step 2: If R has a left child, step 2.1 and 2.2 are
followed.

2.1 A line is drawn between R and its right
child where positions of both the nodes
have already calculated in Step 5 in
algorithm 2.3.

2.2 Call the function “drawline” with the
passing the argument of its left child.

Step 3: If R has a right child, Step 3.1 and 3.2
are followed.

3.1 A line is drawn between R and its right
child where positions of both the nodes
have already calculated in Step 5 in the
algorithm 2.3.

3.2 All the function “drawline” with the
passing the argument of its right child.

Step 4: End function.
3. Implementation: To illustrate the algorithm,
defined in section 2, an example is taken for real
implementation. Respectively section 3.1 and
section 3.2, describe the process of creation of
binary tree from inorder and preorder and
displaying the tree with its realistic view.
3.1: Creation of Binary Tree: Let us assume
that {A, S, D, F, G, H, J} is considered as
inorder of a binary tree and the preorder is {F, S,
A, D, H, G, J}.
Step 1: A link list, with root as a node created

with {A, S, D, F, G, H, J} that is shown
in the figure. 3.1.1.

Step 2: Element F (1st element in preorder) is
found in P node of link list. It is broken
into left and right from F which is
attached as left and right child of the
node, containing with F. That is shown
in the figure. 3.1.2.

 Step 3: The function b_tree is called with left

child of P as argument; same process is
applied on the link list (left child of P).
Hence after finding the S, is similarly
broken into left and right part. That is
shown in figure. 3.1.3.

Step 4: After applying the same things for right

child of the node, containing F, finally
we have got the binary tree, and its root
node is assigned into ROOT. That is
shown in figure. 3.1.4.

 A S D F

G H J

R

Figure 3.1.1: Creation of Link List with

Sequence of the Data in Inorder

 G H J

Figure 3.1.3: Creation of Left and Right
Child of the Node, contained with S

 F

P

 A

 S

 D

Figure 3.1.4: Final Stage of
Creation of Binary Tree

 F

ROOT

 A

 S

 D G

 H

 J
 A S D

 G H J

Figure 3.1.2: Creation of Left and Right
Child of P-Node, contained with F

 F

P

Kumaresan P.K., J. Harmoniz. Res. Eng. 2017, 5(3), 127-132

 www.johronline.com 130 | P a g e

3.2 Display of binary tree: To illustrate the
algorithm 2.3 and 2.4, the process of displaying
of a binary tree with tree like view is shown in
this Section. Now the recently created binary
tree, shows in figure. 3.2.1.

The inorder form of the binary tree is {A, S, D,
F, G, H, J}. The column value of A node is 1
and for S, it is 2. Similarly we calculate column
value for each node. Now row values for A and
S node are calculated with its corresponding
level that is 3 and 2. Similarly row values for
other nodes are also calculated with its
corresponding level. For this particular
implementation, we assume that after calculation
values of both, r_gap and c_gap are assigned
with 2. Hence the position of the each node is
calculated. That is shown in table 3.2.1.
Each node in binary tree is plotted according to
its position, shown in table 3.2.1 in the computer
screen or graph paper where X-axis is denoted
as left to right direction and Y-axis is directed
form top to bottom. This is shown in figure.
3.2.2.
After plotting each node of the tree according to
its correct position, each pair of nodes having
parent-child relationship is to be through a line.
Due to that, we use a function, called
“drawline”, which takes root node of the binary

tree, i.e. Anode, as argument for the first time.
As this F-node has left child, S-node, a line is
drawn between (2, 8) and (4, 4) which are
respective position of F-node and S-node. That
is shown in figure. 3.2.3.
Table 3.2.1: Position of Each Node of the Binary

Tree

After creating F and S, through a recursively
calling the function “drawline” with passing all
nodes one by one, similarly left child for each
node are individually searched. Then connecting
each parent-child pair through drawing a line
depending on their position, shown in table 3.1,
the taken binary tree is being gotten a realistic
tree like view, shown in fig. 3.2.4.
4. Result: In this section, the output of the tree,
which is taken as an example in section 3, is
displayed in figure 4.1. The inorder and preorder
traversal of the tree are respectively {A, S, D, F,
G, H, J} and {F, S, A, D, H, G, J} The program
has been coded with C-Language.

Node
Row

Value
(R)

Column Value
(C)

Position of the
Node

(R × r_gap, C ×
c_gap)

A 3 1 (6, 2)
S 2 2 (4, 4)
D 3 3 (6, 6)
F 1 4 (2, 8)
G 3 5 (6, 10)
H 2 6 (4, 12)
J 3 7 (6, 14)

F

S

A D

H

G J

Figure 3.2.1: The Taken Binary

 1 2 3 4 5 6 7 8 9
1

0

1

1

1

2

1

3

1

4

1

5

1

2 F

3

4 S H

5

6 A D G J

7

8

X-axis

Figure 3.2.2: Plotting of Each Node of
Binary Tree According to its Position

Y
-a

xi
s

 1 2 3 4 5 6 7 8 9
1

0

1

1

1

2

1

3

1

4

1

5

1

2 F

3

4 S H

5

6 A D G J

7

8

X-axis

Figure 3.2.3:Connection between F-node and S-node

through a Line According to its Position

Y
-a

xi
s

Kumaresan P.K., J. Harmoniz. Res. Eng. 2017, 5(3), 127-132

 www.johronline.com 131 | P a g e

5. Analysis: Here we are physically, not
virtually creating a binary tree in computer
memory depending on preorder and inorder
form. We are creating binary tree, actually
through a special kind of link list. We use
preorder of that binary tree only for traversing to
find out the element, from which node link list is
broken into its left and right child. Again the left
child and right child are taken as two individual
link lists, so this same process has to be applied
on each and every node along with its left child
and right child. Hence we are using recursion.
Here preorder is used to supply element one by
one, that is searched in link list or incomplete
binary tree which is under developing. For some
wrong input either in preorder or inorder, after a
certain stage element, supplied by preorder for
searching, will not be found in the incomplete
binary tree. Hence further, creation of binary
tree will not be possible. Binary tree is created
up to the position of correct input.

In computer we are habituate to display a binary
tree either of preorder, postorder or inorder
form. In this project we are also trying to display
a binary tree with a realistic view. So for clear
display of a tree like view, a gap between two
printed nodes is to be calculated such that no
two nodes are overlapped during the printing.
For it, we have to calculate proper position of
each node in a binary tree at the time of tree like
displaying.
After taking a binary tree, the tree is traversed in
inorder form for getting the column value of
each node which is actually the position of the
node in the inorder sequence and the level of
each node is also calculated to assign row value.
Here measuring and considering every thing,
calculated gaps between two nodes along with
X-axis and Y-axis are respectively kept into
r_gap and c_gap. Hence proper position of every
node is calculated through row and column
value along with r_gap and c_gap such that tree
is clearly displayed.
To display the Binary tree, at first, root node of
the tree is connected with its two child-nodes
through drawing lines. Then it is treated that
these two child-nodes are individually also roots
of two sub-trees. Making connection the same
process is applied on these two sub-trees. Hence,
a recursive function, “drawline” is used.
6. Conclusion: A binary tree can be constructed
with only pen and paper from its inorder and
preorder form. Apart from this, display of a
binary tree in inorder and preorder form can be
implemented trough coding, if the binary tree
has already been created in computer memory.
In spite of displaying the inorder, preorder or
postorder form, a binary tree is displayed here
with a realistic tree like view. At first, all nodes
are placed in their proper positions such that no
two nodes are overlapped each other. Finally,
connecting each parent-child node through
drawing line, the display of binary tree is
completed with tree like view.
7. Reference:
[1]. Russell Impagliazzo, Lecture notes from

algorithms courses 101 (Spring 2004;
undergraduate), and 202 (Spring 2004, Fall
2004; graduate). University of California,
San Diego. Used almost everywhere.

 1 2 3 4 5 6 7 8 9
1

0

1

1

1

2

1

3

1

4

1

5

1

2 F

3

4 S H

5

6 A D G J

7

8

X-axis
Figure 3.2.4: Complete Tree like View for the Taken

Binary Tree

Y
-a

xi
s

Figure 4.1

Kumaresan P.K., J. Harmoniz. Res. Eng. 2017, 5(3), 127-132

 www.johronline.com 132 | P a g e

[2]. Fabulous Adventures In Coding, 21 July
2004. Used with permission,
http://weblogs.asp.net/ericlippert/archive/20
04/07/21/189974.aspx, Used in the
backtracking and dynamic programming
chapters.

[3]. Wikipedia, the free encyclopedia.
http://www.wikipedia.org, Quoted/
appropriated pervasively.

[4]. C. A. R. Hoare. “Algorithm 63: Partition”,
“Algorithm 64: Quicksort”, “Algorithm 65:
Find”, from Communications of the ACM.
Volume 4, Issue 7 (July 1961), Page 321,
ISSN: 0001-0782,
http://doi.acm.org/10.1145/366622.366642

[5]. Yashavant Kanitker, Graphics under C, B P
B Publication, 1998

[6]. Seymour Lipschutz, “Data Structure,
Adopted by JAVPAI, TATA Mc GRAW
HILL PUBLISHING CO. LTD.

[7]. Pranam Paul, Saurabh Dutta, A. K.
Bhattacherjee, “Enhancement of
Security through an Efficient Substitution-

based Block Cipher of
Bit-level Implementation with Possible
Lossless Compression”,
International Journal of Computer Science
and Network Security, Vol. 8 No. 4, pp 318
– 326.

[8]. R.S. Salaria, “A Simplified Text cum-
workbok on Data Structure & Algorithm
Using C”, Theory Design and
Implementation, second edition, KHANNA
BOOK PUBLISHING CO.(P)LTD.

[9]. G.S.Baluja, “Data Structure Through C (A
Practical Approach)”, DHANPAT RAI
&CO.(PVT.)LTD.EDUCATIONAL&TECH
NICAL PUBLISHERS.

[10]. Pranam Paul, Saurabh Dutta, A. K.
Bhattacherjee, “An Approach to ensure
Security through Bit-level Encryption with
Possible Lossless
Compression”, International Journal of
Computer Science and Network Security,
Vol. 8 No. 2, pp 291 – 299.

