
Malik N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 167-169

www.johronline.com 167 | P a g e

• -

1. Introduction
In computer science, code generation is the
process by which a compiler's code generator
converts some intermediate representation of
source code into a form (e.g., machine code)
that can be readily executed by a machine.
Code Optimization is the process of
transforming a piece of code to make more
efficient (either in terms of time or space)
without changing its output or side-effects.
The only difference visible to the code’suser
should be that it runs faster and/or

consumes less memory. It is really a
misnomer that the name implies you are
finding an "optimal" solution— in truth,
optimization aims to improve, not perfect, the
result.
Many optimization problems are NP-
complete and thus most optimization
algorithms rely on heuristics and
approximations. It may be possible to come
up with a case where a particular algorithm
fails to produce better code or perhaps even
makes it worse. However, the algorithms tend
to do rather well overall. It’s worth reiterating
here that efficient code starts with intelligent
decisions by the programmer. No one expects
a compiler to replace BubbleSort with
Quicksort. If a programmer uses a lousy
algorithm, no amount of optimization can
make it snappy. In terms of big-O, a compiler
can only make improvements to constant

For Correspondence:
malik2008@in.com
Received on: November 2013
Accepted after revision: December 2013
Downloaded from: www.johronline.com

Abstract
CodeGeneration is the process of transforming code from one representation to
another..CodeOptimization is the field where most compiler research is done today. The tasks of
the front-end (scanning, parsing, semantic analysis) are well understood and unoptimizedcode
generation is relatively straightforward. Optimization, on the other hand, still retains a sizable
measure of mysticism. High-quality optimization is more of an art than a science. Compilers for
mature languages aren’t judged by how well they parse or analyze the code—you just expect it to
do it right with a minimum of hassle—but instead by the quality of the object code they produce.

CODE OPTIMIZATION AND GENERATION

Naeem Akhtar, Rahul, Naveen Malik, Pankaj Sharma, Hardeep Rohilla

Dronacharya College of Engineering, Khentawas,
Farukhnagar, Gurgaon, India

Journal Of Harmonized Research (JOHR)

Review article

 Journal Of Harmonized Research in Engineering
 1(2), 2013, 167-169

ISSN 2347 – 7393

Malik N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 167-169

www.johronline.com 168 | P a g e

factors. But, all else being equal, you want an
algorithm with low constant factors
In a compiler that uses an intermediate
language, there may be two instruction
selection stages — one to convert the parse
tree into intermediate code, and a second
phase much later to convert the intermediate
code into instructions from the instruction set
of the target machine. This second phase does
not require a tree traversal; it can be done
linearly, and typically involves a simple
replacement of intermediate-language
operations with their corresponding opcodes.
However, if the compiler is actually a
language translator (for example, one that
converts Eiffel to C), then the second code-
generation phase may involve building a tree
from the linear intermediate code
2. Object Code
Object code is the output of a compiler after it
processes source code.Source code is the
version of a computer program as it is
originally written (i.e., typed into a computer)
by a human in a programming language. A
compiler is a specialized program that
converts source code into object code.
The object code is usually a machine code,
also called a machine language, which can be
understood directly by a specific type of CPU
(central processing unit), such as x86 (i.e.,
Intel-compatible) or PowerPC. However,
some compilers are designed to convert
source code into an assembly language or
some other another programming language.
An assembly language is a human-readable
notation for the machine language that a
specific type of CPU uses.code, or sometimes
object module, is what a computer compiler
produces.[1] In a general sense object code is
a sequence of statements or instructions in a
computer language,[2] usually a machine
code language (i.e., 1's and 0's) or an
intermediate language such as RTL.
Object files can in turn be linked to form
executable file or library file. In order to be
used, object code must either be placed in an
executable file, a library file, or an object file.
Object code is a portion of machine code that
hasn't yet been linked into a complete
program. It's the machine code for one
particular library or module that will make up
the completed product. It may also contain

placeholders or offsets not found in the
machine code of a completed program that
the linker will use to connect everything
together. Machine code is binary (1's and 0's)
code that can be executed directly by the cpu.
If you were to open a "machine code" file in a
text editor you would see garbage, including
unprintable characters. Object code is a
variant of machine code, with a difference
that the jumps are sort of parameterized such
that a linker can fill them in. An assembler is
used to convert assembly code into machine
code (object code) A linker links several
object (and library) files to generate an
executable.
3. Machine Dependent Code
For some compiler, the intermediate code is a
pseudo code of a virtual machine.

• Interpreter of the virtual machine is
invoked to execute the intermediatecode.

• No machine-dependent code
generation is needed.

• Usually with great overhead.
• Example:

. Pascal: P-code for the virtual
P machine.

. JAVA: Byte code for the
virtual JAVA machine

4. Machine code generation
� Input: intermediate code + symbol tables
� In our case, three-address code
� All variables have values that machines can
directly manipulate
� Assume program is free of errors

Malik N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 167-169

www.johronline.com 169 | P a g e

� Type checking has taken place, type
conversion done
� Output:
� Absolute/relocatable machine code or
assembly code
� In our case, use assembly
� Architecture variations: RISC, CISC,
stack-based
� Issues:
� Memory management, instruction selection
and scheduling,register allocation and
assignment
5. Approaches
� Top-down: count the number of references
to each value
� the most heavily used values should reside
in registers
� Weakness: dedicate a register to value for
entire block
� Bottom-up: spill the value that is needed
the latest
� For each variable use, compute the distance
of its next use

� process each instruction in evaluation
order; when running out of registers, spill the
value whose next use is farthest in the future
� Produces excellent result in many cases
� Not optimal: not all spilling takes the same
number of cycles
� Clean vs. dirty spill: has the variable been
modified?
� Graph Coloring based allocation
6. References
• http://en.wikipedia.org/wiki/Code_generat

ion_(compiler)
• http://c2.com/cgi/wiki?CodeGeneration
• http://dragonbook.stanford.edu/lecture-

notes/Stanford-CS143/20-
Optimization.pdf

• http://www.webopedia.com/TERM/O/obj
ect_code.html

• http://www.iis.sinica.edu.tw/~tshsu/compi
ler2007/slides/slide8.pdf

• http://www.cs.uccs.edu/~qyi/UTSA-
classes/cs4713/slides/MCG.pdf

