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Introduction: Fixed point theorem for 
increasing operators in  Banach spaces are 
extensively investigated and founded a range of 
application to differentialequation. 
In H. Amann[1] gave a survey over some of the 
most important methods and results of nonlinear 
functional analysis in ordered Banach spaces. By 
means of iterative techniques and by using 
topological tools, fixed point theorems for 
completely continuous maps in ordered Banach 
spaces are deduced, and particular attention is 

paid to the derivation of multiplicity results. 
Moreover, solvability and bifurcation problems 
for fixed point equations depending nonlinearly 
on a real parameter are investigated. 
Some existence theorems of the coupled fixed 
points for both continuous and discontinuous 
operators given by Dajun Guo [2] and then offer 
some applications to the initial value problems of 
ordinary differential equations with 
discontinuous right-hand sides. 
Existence theorems of coupled fixed points for 
mixed monotone operators have been considered 
by several authors S.S. Chang [3],Yongzhuo[4], 
K.Deimling[5], D.J. Guo [6]. In S. S. Chang[7], 
study the existence problems of coupled fixed 
points for two more general classes of mixed 
monotone operators and apply main result to 
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show the existence of coupled fixed points for a 
class of nonlinear integral equations.  
Let X be a real Banach Space and K be a closed 
convex cone in X. First, let us recall that  
is called a closed convex cone if K is closed and 
the following conditions hold: 

(i)  
(ii)   
(iii)  
A partial order “≤” can be induced by K 
by  if and only if  

If   , we denote  
The closed convex cone K is said to be normal if 
there exists a constant N> 0 such that  
implies that . 
 
In this paper,we prove some fixed point theorem 
for mixed increasing operator in ordered Banach 
spaces and also give an application to a class of 
volterra type integral equation. 
Preliminaries  
Definition 2.1:- An operator   is 
said to increasing if implies that 

 
Definition 2.2: – An operator  is 
said to be increasing if , for , 

 and  imply that 
. 

Definition 2.3:–Let   be an 
operator. We say that  is a 
coupled fixed point of  F if  and 

 and a point  is called a 
fixed point of  F if  . 
Main Result 
Theorem 3.1:- Let  be a real Banach 
space ordered by a closed convex cone K. Let 

 and ]. Suppose 
that  is a mixed increasing 
operator satisfying the following conditions: 
(i) For any  implies 

that 

 

 
 

Where such that  

 
(ii)  and  

    
 …(3.2) 
Then F has a fixed a unique fixed point 

 
Proof :-      Define  ,  as follows : 

 ,   
    …(3.3) 
We claim that  

 
     …(3.4) 
In fact, for  , since F is mixed increasing, it 
follows from (3.2) that 

 
Suppose that for  , we have 

   …(3.5) 
Since F is mixed increasing,it follows from (3.5) 
that 

 
 

    …(3.6) 
Combining (3.5) and (3.6), we get 

 
By induction we conclude that (3.4) holds. 
 
Now we show that for all  
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Now, 

 

 

 

 

 

 

 
 

 
 
Now,  
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Again,  
 

 

 

 

 

 

 

 

 
 
From (3.8) and (3.9) 
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Now,  
 

 
 

 

 

 

 

 

 
 

 
From (3.8) and (3.9) 

 
 

 
Now,  

 
 

 

 

 

 
Since  

 
 

 
 

 
Continue in this manner, we get 

 

 
 

 
 

 
Since  implies that  and  are 

two Cauchy sequences with same limit.  
Let . Since K is 
closed, it is easy to know that 
`                     
      
 …(3.14) 
For all . Thus we have  . it follows 
from 1 and 8 that 

   =   
Implies that  
 

 
This implies that  is a fixed point of F. 
Now, we show that  is the unique fixed point 
of F.  
Let  be another fixed point of F. Since F is 
mixed increasing, we know that  
for all  
Since K is closed, it is easy to that  . 
thus  this implies that  is the unique fixed 
point of F.  
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Theorem 3.2:- Let  be a real Banach space 
ordered by a closed convex normal cone K. Let 

 and ]. Suppose 
that  is a mixed increasing 
operator satisfying the following conditions: 
(i) There exists two linear continuous operators 

 with L(K)  , S(K)  and 

 
 

 
….(3.15) 

For any ,Where 
 ,  denotes the spectral radius 

of  
(ii)  and  
 
Proof:-      Define  ,  as follows : 

 ,   
As proved in theorem 3.1, we have 

 
     …(3.16) 
Since S, L are two linear continuous operators 
with  and  , 

Let  them . Since 
L(K)  , we have . 
This implies  whenever . 
 It follows that S , L are increasing.  
Now, 
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Again  
 

 
 

 
 

 
 

 

 
 

 
 
from (3.17) and (3.18) 

 

 

 

 
 
Similarly,  
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and  

 
Continue in this way, we get 
 

 

 
 

 
From the normality of K and (3.20) 

 

 

 
     

 
 

 

 
 
Since 

 
 
We have 

       
For some constant  and for sufficiently 
large n. 
It follows from (3.21) and (3.22) that 

 
 

 
Implies that  and  are two Cauchy 
sequences with same limit.  
Let . Since K is 
closed, it is easy to know that 
`                    …(3.23) 
For all  

 
By the normality of K we have 

     …(3.24) 
This implies that  
 

 
This implies that  is a fixed point of F. 
Now, we show that  is the unique fixed point 
of F.  
Let  be another fixed point of F. Since F is 
mixed increasing, we know that  
for all  
Since K is closed, it is easy to that  . 
thus  this implies that  is the unique fixed 
point of F.  
Application: Let E be a real Banach space 
induced by a closed convex normal cone P.  
be the partial ordering induced by P and N be the 
normal constant.  
Let  
and  where 

For each ,  
We define .  
Then  is a real Banach space with norm 

 and  is closed convex normal cone with 
normal constant N. In this section, we also 
denote “ ” by the partial ordering induced by . 
In the following, we consider the following 
Volterra type integral equation : 
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Where  and 
 is a nonnegative continuous 

function. 
 
Theorem 4.1:- Let  
and . Suppose 
that the following conditions hold: 
 
   C(1):   is measurable for 

any  
 

 
 

 
 

        C(3):   There exist two nonnegative 
constants  and  such that 

 
and  imply that 

 

 
 

        C(4):      There exist a constant  such 
that, 

 
        C(5):  

 

 

   ….(4.2) 
 

 
Then  and  both converges 
uniformly to the unique solution  of (4.1) 
Proof:-  Define as follows: 

 

  ….(4.3) 
     From C(2) and (4.2), we know that 

and , since k(t,s)is 
nonnegative and continuous, it follows from C(3) 
that 

 
 

 

 

 
    
Where, 
 

 
It follows from C(4) and C(5) that L , S are two 
positive linear operators (in the sense that L is 
positive if  whenever  ) with 

 

By theorem 3.2, we know that A admits a 
unique fixed point .  

Further, from the proof of theorem 3.2, 
we know that  and  both converges 
uniformly to the unique solution of (4.1). The 
proof is complete. 
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