Journal Of Harmonized Research (JOHR)

Journal Of Harmonized Research in Applied Sciences 6(4), 2018, 254-264

ISSN 2321 – 7456

Original Research Article

ANALYTICAL METHOD DEVELOPMENT AND VALIDATION BY HEADSPAVE GAS CHROMATOGRAPHY FOR RESIDUAL SOLVENTS IN IGURATIMOD

Ravindra B. Nehete¹, Pushpendra Sharma²

Sri Satya Sai University of Technology & Medical Sciences, Sehore

Abstract: Testing of residual solvent is a primary requirement for any drug substance. These studies provide information about the residual solvents content in Iguratimod with simple, accurate, precise by headspace gas chromatography. Method by head space gas chromatography with flame ionization detector has been developed and validated to detect and quantitate the specified solvents. Baseline separation in-between the peaks were been achieved by suing capillary column with a flame ionization detector. Percentage recovery obtained in the range of 80-120% and the method is linear for all the specified solvents as per synthesis route of synthesis of Iguratimod. Range for these method is listed for each solvent - Ethanol (50ppm - 7500ppm), Acetone (50ppm - 7500ppm), Isopropyl alcohol (50ppm - 7500ppm), Acetonitrile (20ppm - 615ppm), Dichloromethane (30ppm - 900ppm), Ethyl acetate (50ppm - 7500ppm), Methanol (30ppm - 4500ppm), Pyridine (20ppm - 300ppm), Dimethyl formamide (88ppm - 1320ppm), Benzene (0.2ppm - 3ppm), Nitrobenzene (3ppm - 45ppm). All five methods are having the coefficient of variation (r) not less than 0.99. This proposed methodology was found precise, linear and accurate for the specified range for respective solvents.

Keywords: Iguratimod, validation, development.

Introduction: Residual solvents in drug substance or drug products are a potential toxic risk factor and are major concerns for manufacturer. These residual solvents can affect the quality and stability of active pharmaceutical

For Correspondence: ravindra.nehete@ipca.com. Received on: April 2018 Accepted after revision: July 2018 DOI: 10.30876/JOHR.6.4.2018.254-264 ingredient and pharmaceutical dosage form. Thus, acceptable levels of these residual solvents are incorporated as per ICH guidelines. Residual solvents can be classified into four different classes due to their toxicity level and potential environmental hazard.

Class 1 solvents are to be avoided because these are known carcinogens and can harmful to humans as well as environment, but can be used with rationale.

Class 2 solvents are to be limited use due to their inherent toxicity.

Class 3 solvents can be used where these can be removed by synthetic process because these solvents are low toxic potential to humans.

Class 4 these solvents don't have adequate toxicological data.

All these solvents can be analyzed by chromatographic techniques such as static headspace gas chromatography (HS-GC).

Experimentation:

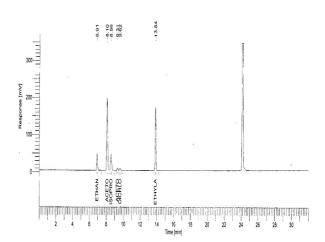
All five methods were analyzed by gas chromatographic instrument using flame ionization detector (FID).

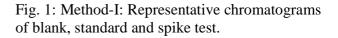
	ionization detector (FID).				
CHROMATOGRA	APHIC CONDITI	ONS			
Method	Method-I	Method-II	Method-III	Method-IV	Method-V
Instrument				GCHS with	
					autosampler
	-			RTX-624	DB-1
column)				(30 m X 0.53 mm X 3.0μm).	X = 0.32 mm X = 1.0 μ m).
GC Parameters :	α 3.0μ).	α 3.0μ).	κ 5.0μ).	α 3.0μ).	μπ.
Initial oven temp.	40°C	40°C	80°C	45°C	45°C
Initial hold time	10 minutes	10 minutes	5 minutes	6 minutes	2 minutes
Ramp	8°C/minute	8°C/minute	10°C/minute	10°C/minute	15°C/minute
Oven temp.II	200°C	200°C	220°C	220°C	320°C
Hold time II	5 minutes	5 minutes	2 minutes	2 minutes	2 minutes
Carrier gas	Nitrogen	Nitrogen	Nitrogen	Nitrogen	Nitrogen
Flow	1.5 ml/min.	1.5 ml/min.	2 ml/min.	3 psi	2 ml/min.
Split ratio	20:1	20:1	10:1	10:1	10:1
Injector temp.	200°C	200°C	180°C	180°C	240°C
Detector temp.	240°C	240°C	240°C	240°C	320°C
Range:	1	1	1	1	-
Attenuation:	-6	-6	-6	-6	-
Head space parame		-	-	_	I
Vial temp.	90°c	90°c	95°c	100°c	_
Needle temp.	100°c	100°c	100°c	110°c	_
Transfer line					
temp.	110°c	110°c	110°c	120°c	-
Headspace carrier	15 psi	15 ngi	15 pgi	15 pgi	_
pressure		15 psi	15 psi	15 psi	-
GC cycle time	45 min.	45 min.	25 min.	35 min.	-
Time for Vial	20 min.	20 min.	20 min.	20 min.	-
equilibration					
Pressurization	3 min	3 min	3 min	3 min	-
time					51
Injection volume	0.2ml	0.2ml	0.24ml	0.4ml	5 µl
Needle withdraw time	0.2 minute	0.2 minute	0.2 minute	0.2 minute	-
Thermostat time	20 min.	20 min.	20 min.	20 min.	_
i nermostat time	20 IIIII.	20 IIIII.	20 mm.	20 IIIII.	

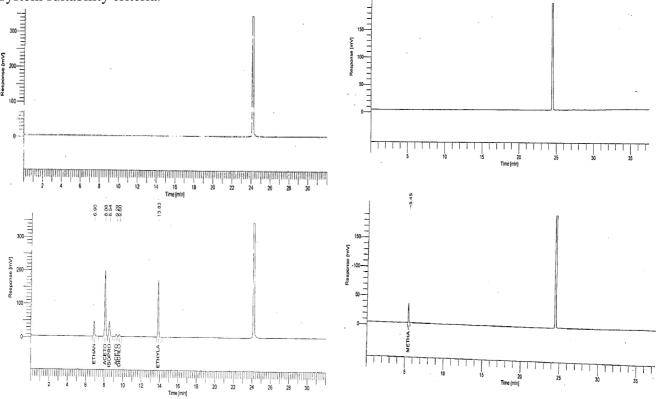
Nehete R.B. & Sharma P., J. Harmoniz. Res. Appl. Sci. 2018, 6(4), 254-264

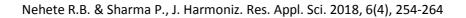
System suitability criteria (RSD for area of replicate standard injections)	Not more than : 15.0%			
---	-----------------------	-----------------------	-----------------------	-----------------------

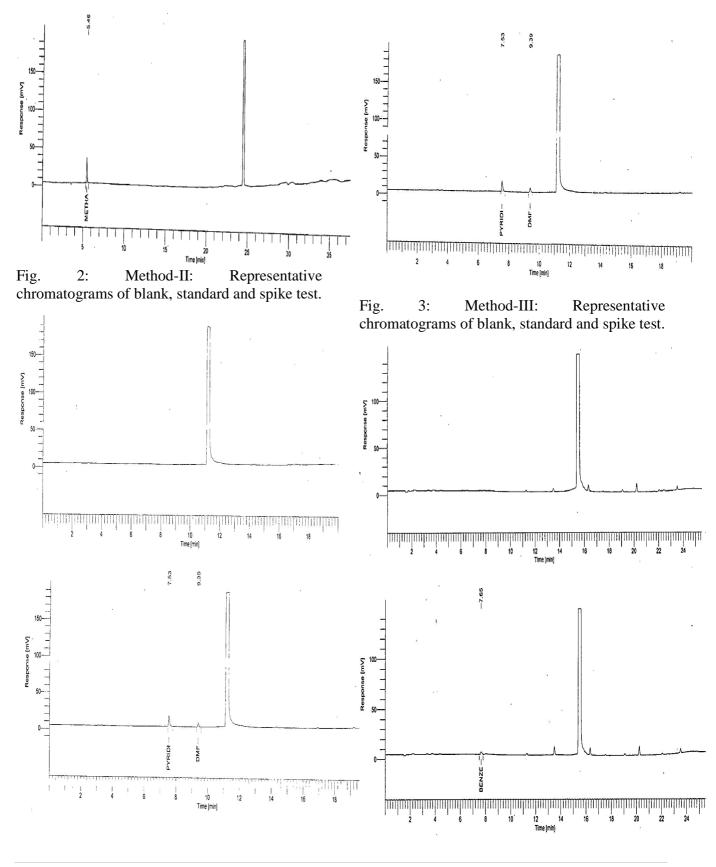
Method -I (For Ethanol, ethyl acetate, 2propanol, acetone, Acetonitrile, dichloromethane) Method-II (For Methanol) Method-III (For Pyridine and Dimethyl

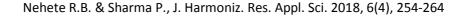

formamide)

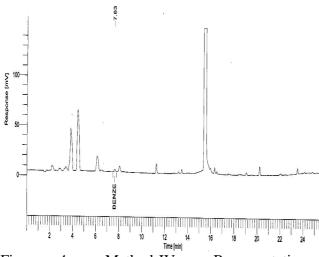

Method-IV (Benzene)

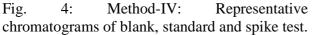

Method-V (Nitrobenzene)

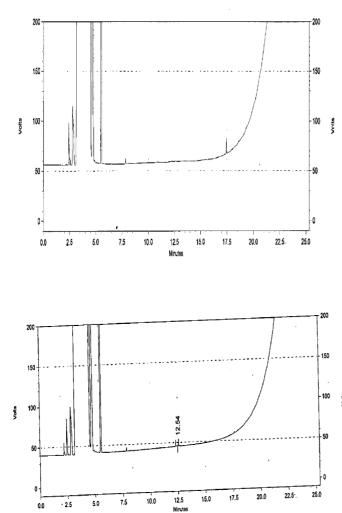

Procedure: Set the gas chromatograph and condition as mentioned above. In blank monitoring there should not be the baseline drift as well as no interference of any peak at retention time of the analyte peak. Inject blank, standard and sample as per approved protocol.

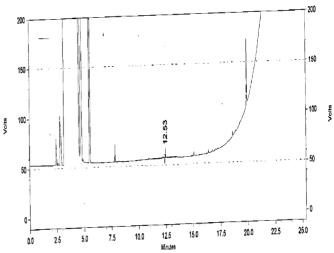

Calculate the relative standard deviation for area response of six replicate standard injections as system suitability criteria.










www.johronline.com

5: Method-V: Fig. Representative chromatograms of blank, standard and spike test. Results and Discussion: In this validation activity, analytical method by using head space gas chromatography instrument was developed and validated for quantification of solvents Ethanol, Ethyl acetate, 2-Propanol, Acetone, Dichloromethane, Acetonitrile, Pyridine, Dimethyl formamide, Methanol, Benzene and Nitrobenzene in Iguratimod. The method was validated as per ICH guideline for the parameters like selectivity, limits of detection and quantitation, linearity, precision and recovery as well as robustness (deliberate chromatographic conditions). change in Analytical results obtained by using all the five methods are well within the acceptance criteria. The test methods were validated and had good reproducibility, linearity and recovery for the respective solvents as per synthetic route of synthesis.

Selectivity: Capillary column selection was done due to standard stationary phase, which has very good baseline separations of analyte and diluents. All the five methods show good peak shapes for all the analyte peaks with excellent column efficiency. No any blank chromatogram shows any interference wrt to analyte peaks.

Specificity: Specificity was performed to demonstrate non-interference of other peaks with analyte peak during sample analysis.

www.johronline.com

Specificity has been performed by injecting blank, individual solvent, standard, test and spiked test. Representative chromatograms are shown for all method in Fig.1, Fig.2, Fig.3, Fig.4 and Fig.5.

System Precision: System precision demonstrates that the chromatographic system gives precise measurements for analytical method with replicate measurements at target concentration.

Method precision: Method precision demonstrates that the analytical method provides

the precise results for replicate measurements of homogenous sample.

Linearity: Linearity proves the direct correlation between test results and concentration of analyte in sample. The linearity study was carried for solvents (Ethanol, Ethyl acetate, 2-Propanol, Acetone, Acetonitrile, Dichloromethane, Pyridine, Dimethyl formamide, Methanol, Benzene Nitrobenzene) and from LOO concentration to 150% of specification level.

Conc.(ppm)	Average area	Linearity for Ethanol y = 208.2317x + 1,143.1919
502.88	104591	$\begin{array}{c} y = 208.2317x + 1,143.1919 \\ 2000000 \\ \\ R^2 = 0.9999 \end{array}$
2514.38	529195	1500000
3771.57	786988	
5028.77	1041291	
6285.96	1311814	500000
7543.15	1573437	o 🖌
Slope =	208.2317	0.00 5000.00 10000.00
Correlation coefficient=	1.0000	Conc. (ppm)
Squared correlation coefficient=	0.9999	

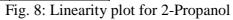

Conc.(ppm)	Average area	Linearity for Ethylacetate
501.68	339772	y = 672.9087x + 1.396.7946
2508.39	1648586	$R^2 = 0.9997$
3762.58	2572829	σ4000000
5016.78	3397072	₹3000000
6270.97	4221316	2000000
7525.17	5045559	
Slope =	672.9087	
Correlation coefficient=	0.9999	0.00 5000.00 10000.00
Squared correlation coefficient=	0.9997	Conc. (ppm)

Fig. 6: Linearity plot for	Ethanol
----------------------------	---------

Fig. 7: Linearity plot	for Ethyl acetate
------------------------	-------------------

Conc.(ppm)	Average area		Linearity for 2-Propanol (IPA)
501.28	121875	2500000	y = 255.9086x - 8,093.0930
2506.39	635175		$R^2 = 0.9998$
3759.59	958663	2000000	
5012.78	1258175	a 500000	
6265.98	1597693	1000000	*
7519.17	1922212	500000	*
Slope =	255.9086	0	*
Correlation coefficient=	0.9999	0.	.00 2000.004000.006000.008000.00
Squared correlation coefficient=	0.9998		Conc. (ppm)

Nehete R.B. & Sharma P., J. Harmoniz. Res. Appl. Sci. 2018, 6(4), 254-264

Conc.(ppm)	Average area	Linearity for Acetone
500.38	453762	y = 916.8195x + 5,191.4390
2501.90	2288711	$R^2 = 0.9999$
3752.84	3481217	6000000
5003.79	4574623	¥4000000
6254.74	5768029	*
7505.69	6861435	2000000
Slope =	916.8195	0
Correlation coefficient=	0.9999	0.00 2000.004000.005000.008000.00
Squared correlation	0.9999	Conc. (ppm)
coefficient=		
	Fig. 9: Lineari	ty plot for Acetone
Conc.(ppm)	Average area	Linearity for Acetonitrile
41.28	15375	y = 375.0366x - 162.9803
206.39	77686	R ² - 0.9995
309.59	115068	200000
412.79	153357	្រីខ្លី150000 🥢
515.98	196464	100000
619.18	230603	50000
Slope =	375.0366	0
Correlation coefficient=	0.9998	0.00 500.00 1000.00
Squared correlation	0.9995	Conc. (ppm)
coefficient=	0.7775	

Fig. 10: Linearity plot for Acetonitrile

Conc.(ppm)	Average area	Linearity for Dichloromethane
61.90	16828	y = 269.0169x - 704.3502 300000 R ² = 0.9995
309.49	83804	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
464.24	121522	£00000
618.98	165568	₩ ₩ ₩ ₩ ₩
773.73	205985	100000
928.47	251302	
Slope =	269.0169	0
Correlation coefficient=	0.9998	0.00 200.00400.00600.00800.00000.00
Squared correlation coefficient=	0.9995	Conc. (ppm)
928.47 Slope = Correlation coefficient= Squared correlation coefficient=	251302 269.0169 0.9998 0.9995	50000 0 0.00 200.0000.0000.0000.0000000000

Fig. 11: Linearity plot for Dichloromethane

Average area	Linearity for Methanol
11514	y = 36.3445x + 1,099.7827 200000 $= R^2 - 0.9995$
55527	$R^2 = 0.9995$
83875	_150000
113441	₽ 100000
138139	
164771	50000
36.3445	0
0.9997	0.001000.022000.032000.042000.050000.00
0.9995	Conc. (ppm)
	11514 55527 83875 113441 138139 164771 36.3445 0.9997

Fig. 12: Linearity plot for Methanol

Conc.(ppm)	Average area	Linearity for Pyridine
20.94	7848	y = 354.5921x + 378.3583
104.70	37404	$R^2 = 0.9999$
157.04	56516	A
209.39	74088	
261.74	93060	40000
314.09	112023	20000
Slope =	354.5921	
Correlation coefficient=	1.0000	0.00 100.00 200.00 300.00 400.00
Squared correlation	0.9999	Conc.(ppm)
coefficient=	0.7777	

Fig. 13: Linearity plot for Pyridine

Conc.(ppm)	Average area	Linearity for Dimethylformamide
89.17	2460	y = 29.3541x + 249.2229
445.85	13819	$R^2 = 0.9993$
668.78	19977	40000
891.71	26639	ଞ୍ଚି 30000
1114.63	32599	20000
1337.56	39495	10000
Slope =	29.3541	
Correlation coefficient=	0.9997	0.00 500.00 1000.00 1500.00
Squared correlation coefficient=	0.9993	Conc. (ppm)

Nehete R.B. & Sharma P., J. Harmoniz. Res. Appl. Sci. 2018, 6(4), 254-264

Fig. 14: Linearity plot for Dimethyl formamide

Conc.(ppm)	Average area	Linearity for Benzene			
0.20	1962	v = 95752004x - 138034			
1.01	9360	35000 R ² = 0.9992			
1.52	14546	g 25000			
2.03	19925	20000			
2.53	24047	15000			
3.04	28989	10000			
Slope =	9575.2004				
Correlation coefficient=	0.9996	0.00 2.00 4.00			
Squared correlation	0.9992	Conc. (ppm)			
coefficient=	0.7772				

Conc.(ppm)	Average area	Linearity for Nitrobenzene			
3.11	3532	y = 1,148.7674x - 122.2149			
15.57	17567	R ² = 0.9998			
23.35	26715	×			
31.13	35533				
38.92	45091				
46.70	53230	10000			
Slope =	1148.7674				
Correlation coefficient=	0.9999	0.00 20.00 40.00 60.00			
Squared correlation	0.9998	Conc. (ppm)			
coefficient=	0.7770				

Fig. 15: Linearity plot for Benzene

Fig. 16: Linearity plot for Nitrobenzene

LOD (limit of detection) and LOQ (limit of quantitation) determination:

LOD: Detection of lowest amount of analyte peak in sample to be analyzed.

LOQ: Quantification of lowest amount of analyte peak in sample to be analyzed.

LOD and LOQ can be determined by different method like signal to noise ratio, residual standard deviation, visual basis, etc.

Accuracy: Accuracy is the closeness of obtained results with the true value.

Robustness: Robustness can be demonstrated by deliberate change in chromatographic condition obtained results are well within acceptable criteria wrt to standard chromatographic conditions.

VALIDATION	N SUMMARY	REPORT				
Method	Method-I	Method-II	Method-III	Method-IV	Method-V	Acceptance criteria
Specificity	No interference observed		No interference observed	No interference observed	No interference observed	No interference should observed at retention time of analyte
System Precision	RSD below 15.0%	RSD below 15.0%	RSD belov 15.0%	RSD below 15.0%	RSD below 15.0%	RSD for area of replicate standard injections should be NMT 15.0%
Method Precision	RSD below 10.0%	RSD below 10.0%	RSD belov 10.0%	RSD below 10.0%	RSD below 10.0%	RSD for test results should be NMT 10.0%
Linearity	Correlation coefficient more thar 0.999	coefficient	Correlation coefficient more thau 0.999	Correlation coefficient more than 0.999	coefficient	Correlation coefficient should be NLT 0.98
Accuracy	recovery of analyte is between	frecovery of analyte is between	recovery o analyte i between	frecovery of sanalyte is between	analyte is between	RSD for recovery of analyte should be between 80.0% to 120.0%
Robustness Flow(±0.1ml /min),Temp. (±2.0°C)	RSD below 10.0%	RSD below 10.0%	RSD belov 10.0%	RSD below 10.0%	RSD below 10.0%	RSD for test results should be NMT 10.0%
propanol, aceto Method-II: For	one, Acetonitri r Methanol For Pyridin	ethyl acetate le, dichloromet e and Dim	thane for the ethyl Act Pyr	the quality con residual Ethar etone, Acet idine, Dimet	ntrol of Igura nol, Ethyl ace onitrile, I hyl formam	nethod proposed timod to analyze tate, 2-Propanol, Dichloromethane, ide, Methanol,

Method-IV: For Benzene

Method-V: For Nitrobenzene

Table 1: Validation summary report

for the quality control of Iguratimod to analyze the residual Ethanol, Ethyl acetate, 2-Propanol, Acetone, Acetonitrile, Dichloromethane, Pyridine, Dimethyl formamide, Methanol, Benzene and Nitrobenzene contents, met the validation requirements. Results were obtained are well with globally accepted validation criteria. The method was sensitive, linear, accurate and precise. The drug substance was analyzed under validated method conditions and the concentrations of residual Ethanol, Ethyl acetate, 2-Propanol, Acetone, Acetonitrile, Dichloromethane, Pyridine, Dimethyl formamide, Methanol, Benzene and Nitrobenzene was much lower than their maximum ICH limits.

References:

- 1.International conference of harmonization. Impurities: Guideline for residual solvents. ICH harmonized tripartite guideline, 1997. Available at: http://www.ich.org. Accessed on: 09 Jan. 2008.
- 2.United States Pharmacopoeia. Rockville: United States Pharmacopoeia Convention, 2006. p. 1577-1578.
- 3.International Conference on Harmonization, Impurities in new drug substances, Q3A (R2) 2006
- 4.International Conference on Harmonization, Validation of Analytical Procedures: Methodology, Q2B. 1996
- 5.Proceeding of International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), Tripartite harmonized guideline Q3C Impurities: Residual Solvents, 1997.
- 6.Residual solvents (5.4), European Pharmacopoeia, Supplement 4.6., Directorate for the Quality of Medicines of the Council of Europe, Strasbourg, 6th edn., 2010 (6.6).
- 7.Harmonised Tripartite Guideline on Impurities: Residual Solvents (Q3C),

International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), Geneva, 1997.

- Harmonised Tripartite Guideline on Maintenance of Note for Guidance on Impurities: Residual Solvents (Q3C(M)), 'Permissible Daily Exposure (PDE) for Tetrahydrofuran and N-Methyl pyrrolidone', International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), Geneva, 2002.
- 9. Harmonised Tripartite Guideline on Impurities: Impurities in new drug substances (Q3A(R)), International Conference on Harmonization of Technical Requirements for Registrations of Pharmaceuticals for Human Use (ICH), Geneva, 2002.
- 10. Harmonised Tripartite Guideline on Validation of Analytical Procedures (Q2A), International Conference on Harmonization of Technical Requirements for Registrations of Pharmaceuticals for Human Use (ICH), Geneva, 1994.
- 11. Harmonised Tripartite Guideline on Validation of Analytical Procedures: Methodology (Q2B), International Conference on Harmonization of Technical Requirements for Registrations of Pharmaceuticals for Human Use (ICH), Geneva, 1996.