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Introduction: The simulation calculations are 
made at a large distance scale to understand the 
phenomenon of quark confinement. Monte 
Carlo simulation on QCD lattice show that 
quark potential increases linearly at large 
distances (beyond the distance of few fermies) 
and the strength of potential is controlled by 
the string tension σ. However for small 
distances the quark-antiquark Q potential 
V(r) behaves as coulomb potential.  
Mathematically interquark potential V(r) is 
given as [1-3] 

                               (1)           

where, r is the interquark distance, and is the 
string tension, A is color-Coulomb coefficient 
and C is an irrelevant constant. 
Lattice QCD study gives that the linear 
confinement term arises due to the one 
dimensional color flux squeezing of the quarks 
[1]. In 1970’s Nambu, t’Hooft and Mandelstam 
[4] presented the concept of dual 
superconducting picture. From the viewpoint 
of the dual superconducting picture Ginzburg 
Landu theory [5] was formulated, and 
described the flux tube structure of hadrons. 
Dual Superconductor picture: The dual 
superconductivity is the promising scenario for 
quark confinement. Dual superconductivity is 
the electromagnetic duality of the ordinary 
superconductivity. As superconductivity is 
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caused by the condensation of cooper pair 
(electrically charged particles) similarly the 
dual superconductivity is assumed to be caused 
by the condensation of magnetic monopoles 
(magnetically charged particles). In dual 
superconductors the dual Meissner effect 
squeezes the color electric flux between the 
quarks in the form of tube like region as shown 
in the Figure 1. 

Fig. 1 Dual Superconducting picture 
The dual superconducting picture provides a 
framework for the study of quark confinement 
however there are two major drawbacks which 
make it difficult to define QCD vacuum from 
this picture. These drawbacks are as given 
below: 
Drawbacks of Dual Superconducting 
picture:  (1).The dual superconducting picture 
supports to the Abelian dominance i.e. dual 
superconductivity is assumed as the Abelian 
U(1) gauge theory like QED, while QCD is a 
non abelian SU(3) gauge theory. 
(2).The dual superconductivity considers the 
existence of the electromagnetic duality of 
cooper pairs, but there is no resemblance of 
monopole condensation with QED. 
To establish the dual superconducting picture it 
is essential to overcome these drawbacks. To 
resolve these gaps currently there are at least 
two methods available. 
Abelian Projection:  Abelian Projection is a 
mathematical procedure  has been proposed by 
t’Hooft [6]  through which the confining 
physics of an SU (N) gauge theory can be 
explained by the   degrees of freedom 

. In particular of SU (3) QCD, it is possible to 
reduce QCD to an Abelian U (1) Χ U (1) 
gauge theory including monopole degrees of 
freedom. 
Field decomposition and change of variable: 
This method has been proposed by Cho [7] and 
Duan and Ge [8] and latest by Faddeev and 
Niemi [9] and Shabanov [10].So it is called 
CDGFNS decomposition. In this method the 
monopole condensation is defined by gauge 
independent way. Abelian projection can be 
regarded as gauge fixed version of field 
decomposition.  
In our review study we are focused on Abelian 
projection which is an extensively used method 
to extract magnetic monopoles from Yang 
Mills field, refers that only diagonal gluon 
components play the dominant role for the non 
perturbative QCD phenomenon like 
confinement.  
Maximally Abelian Gauge (MAG) and 
Cartan Decomposition: The maximally 
abelian (MA) gauge has been successfully 
applied for the analysis of gluon propagator 
[11],to explain  large effective mass generation 
of off diagonal gluons and for the study of 
infrared abelian dominance[12].In continuum 
Euclidean QCD the MA gauge is maximized 
by minimizing the off diagonal gluon field 
under the gauge transformation [11-13]. 
The gluon field in QCD has both diagonal 

and off diagonal parts. In continuum, Cartan 
decomposition is given by – 

             (2) 

  where = are the diagonal generators, 

and  are the off diagonal generators 

of SU(3).The off diagonal part  

represent the non abelian nature and 
 induces the Abelian Projection. 

For MA projection the minimization of off 
diagonal part is given as-

 

[                                                       (3) 
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The SU(3)  QCD link variables  is given 

as- 
                  (4)                          

where ‘a’ is the lattice spacing and ‘g’ is gauge 
coupling. In lattice formalism MA gauge is 
defined by maximizing Abelian part of link 
variables under the SU(3) gauge 
transformation. 

  

                                                                      (5) 
After the MA gauge fixing ,the SU(3) link 
variables are factorized with respect to the 
Cartan decomposition of SU(3) into U .The 
SU(3) gauge transformation of link variable is 
defined by- 

  with 

                                            (6) 
 be the link variables in MA 

gauge .The abelian part of the link variable is 
extracted as- 

U               (7) 

also may be written as,   
 

)

                                          (8) 
and the off diagonal link variable is defined as- 

      (9) 

which leads to the Cartan decomposition of the 
gauge group 

 

                    (10) 
In the MA gauge, there remains residual U  
Abelian gauge symmetry, which does not 
change the MA gauge condition. Using the 
Abelian gauge function υ(s)  U  

   (11) 

The off diagonal link variable behave as charged 
matter fields to keep the form of SU(3)/ . 

                           (12) 
Abelian link variables behave as abelian gauge 
field. 

     (13)        

Numerical conditions and Formalism for Q  
Potential Calculations: We review the 
numerical analysis performed by N. Sakumichi 
et.al [14] for Q  potential calculations. The 
Monte Carlo simulation was performed using 
SU(3) standard plaquette action with lattice 
parameter and various lattices of 
spatial size La 2  corresponding to the 
lattice spacing a=0.058-0.148 fm. Large no. of 
gauge configurations (200-600) were sampled. 
For MA gauge fixing overrelaxation method was 
used. Also smearing method was used for 
accurate measurement. 
For a closed RT rectangle trajectory C, the 

Wilson loop .The 

quark-antiquark potential was calculated as- 
             (14)                                                  

where  is the statistical average over the 
gauge configuration .The MA projection of the 
quark-antiquark potential was calculated as-                  
                                  

      (15) 

The off diagonal part of the quark-antiquark 
potential was calculated as- 

        (16) 

Quantitative Analysis on Abelian Dominance 
for confinement:     Sakumichi et al. [14] 
calculated the SU(3) potential V(r) and Abelian 
projected potential  in MA gauge at 

 on and  on 
32 lattice. Fit analysis taken from Table I 

with Coulomb plus linear ansatz of Eq. 1.
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Table I Phys.Rev.D90, 11501(R) (2014) represents Fit analysis with the Coulomb plus linear 
ansatz for QQ potentials.For each potential value of lattice parameters σ,A,C is listed in the 

functional form of eq.1 
 Fig. 2(a) reflects that at large distances there is 
resemblance in the behaviour of   V(r) and 

. The same slope of V(r) and  
suggests the Abelian dominance for 
confinement. To demonstrate the perfect abelian 
dominance N. Sakumichi et al. observed the 
behaviour of V(r)  with interquark 
distance. In Fig.2 (b) the fit (1) is Coulomb plus 
linear ansatz and fit 2 is the pure Coulomb 

ansatz of Eq.1. From Fig.2 (b) and Table I , it 
appears that   V(r)  is well described 
by pure  Coulomb ansatz and have almost zero 
string tension σ .It may be understand as 

.It implies that 

.This also suggests perfect abelian 

dominance for confinement. 

                  
 
 
 
 
 
 
 
 

FIG. 2: (a) Cartan decomposition of the Q¯ Q potential (b) Fit analysis of V (r) −  (r) to 
illustrate the perfect Abelian dominance of quark confinement. Phys.Rev.D90, 11501(R) (2014) 
       For the smaller lattices only approximate 
Abelian dominance was observed. Stack el.al 
[13] reported for  lattice 
at  and for 

 lattice at   . Fig. 3(a) shows that 
Perfect Abelian dominance seems to be realized 
when spatial size La is sufficiently large [14].

 
 
 
 
 
 

FIG.3: (a) Represent Physical spatial-size dependence of  (b) Comparison between 
.Phys.Rev.D90, 11501(R) (2014) 
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From the analysis of V(r),  and  

a summation relation 
 has been 

observed[14]. Fig.3(b) shows the comparison 
between  for  

lattice.The summation relation looks fair for 
large distances as well as small distances 
because the difference between V(r)  and  

 is complemented by  .But the 

summation formula is non trivial because of non 
abelian nature of gauge fields. 
Consider [ is SU(3) Wilson loop as 

discussed in Eq. 14 
[  = Tr[  

                                   = Tr  

 because the Abelian link variables  and 

off-diagonal link variables  are not 

commutable link variables, so we may 
write,  

Tr[   Tr[    

Then a simple factorization of Wilson loop and a 
simple summation on the potential cannot be 
expected. 
In general, [    [ [   

and                (17) 

This represents the non triviality of summation 
formula. 
Conclusion: SU(3) potential and its abelian part 
have almost same slope at large distances. It 
refers the Abelian dominance of confinement. 
Perfect Abelian Dominance of string tension is 
analysed mathematically as 

the 
spatial volume of the lattice is large 
(approximately greater than .From the 

simulation of potentials V(r),  and 
 a simple, non trivial relation 

 is observed. 
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