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Introduction: By a graph ( , )G V E=  we mean a 
finite undirected graph without loops and 
multiple edges. A subset D  of  V is called a 
dominating set of G  if every vertex not in D is 
adjacent to some vertex in D. The domination 
number or vertex domination number  of G  
denoted by ( )Gγ  is the minimal cardinality 
taken over all dominating sets of G.  A vertex v 
in a graph G dominates the vertices in its closed 
neighbourhood N(v), that is, v is said to 
dominate itself and each of its neighbours.  

 A dominating set of G is called a s-path 
dominating set of  G  (3 )s diamG≤ ≤  if every 
path of length s in G has atleast one vertex in this 
dominating set. We denote   a  s-path dominating  
set by  

spD .The s-path domination number of G 

denoted by ( )
sp Gγ  is the minimal cardinality 

taken over all s-path dominating sets of  G. By 
definition every s-path dominating set is a 
dominating set but the converse is not true. Also 

it follows that 
spD D≤  and hence 

( ) ( )
spG Gγ γ≤ . 

                Let D be the set of all distances 
between distinct pairs of vertices in G and let 

sD (called the distance set) be a subset of D. The 
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distance graph of G denoted by ( , )sD G D  is the 

graph having the same vertex set as that of G and 
two vertices u and v are adjacent in 

( , )sD G D whenever ( , ) sd u v D∈ . 

 
 The shadow distance graph of G, denoted by 

( , )sd sD G D is constructed from G with the 

following conditions: 
i) consider two copies of G say G itself and 'G  
ii)  if u ( )V G∈ (first copy) then we denote the 

corresponding vertex as ' '( )u V G∈ (second 
copy) 

iii)  the vertex set of ( , )sd sD G D  is '( ) ( )V G V G∪  

iv)  the edge set of 

( , )sd sD G D is
'( ) ( ) dsE G E G E∪ ∪ where dsE is the 

set of all edges between two distinct vertices  
u ( )V G∈  and ' '( )v V G∈  that satisfy the 

condition ( , ) sd u v D∈  in G. 

 
Figure 1.  The graph 5( ,{2})sdD P 

Main Results  
Theorem 2.1.  If G is a graph with no isolated 

vertices, then 
3

( ) ( )
2p

n
G Gγ γ≤ ≤  

Proof:  Let 
spD is a minimal dominating set of G. 

Every vertex in  
spD adjacent with at least one 

vertex in V-
spD . Hence  V-

spD is a dominating 

set and { }( ) ( ) min , .
2s s sp p p

n
G G D V Dγ γ≤ ≤ − ≤  

Theorem 2.2.For any graph G,  
( )

1 ( ( ) 1)
( )

( ) ( )
2sp

G
n G

G
G G

δ
δγ γ

∆ + − − 
≤ ≤  

 
  

 

Proof :  The upper bound is immediate. 

Theorem 2.3.  For any graph G,  

( ) ( )
1 ( ) sp

n
G G

G
γ γ 

≤ ≤ + ∆ 
 

         
    Proof: Let 

spD be  s-path dominating set of G.   

    Each vertex dominates at most itself and 
    ( )G∆   other    vertices.  Hence the result. 

 
The following results are immediate from the 
definition 
Theorem 2.4. Let 3n ≥ .  Then  

( ) , 3
3sp n n

n
P s diamPγ  = ≤ ≤  

 

We recall the following result related to ( )Gγ . 
Theorem 2.5. [5] A dominating set D is a 
minimal dominating set if and only if for each 
vertex v in D, one of the following condition 
holds:              

i)  v is an isolated vertex of 
D 

ii)   there exists a vertex  u 
∈V-D   such that  
N(u)∩  D = { }v   

An analogous result related to s-path domination 
is stated below; 
Theorem 2.9. A dominating set 

spD  is a minimal 

dominating set if and only if for each vertex v in 

spD , one of the following condition holds:              

i)  v is an isolated vertex of 

spD  

ii)   there exists a vertex  u 
∈V-

spD    such that  

N(u)∩  
spD  = { }v  

 
We first provide below the results for vertex 
domination number of the shadow distance graph 
of the path graph with specified distance sets. 

  
Theorem 2.10. Let n5.≥ Then 

( { ,{2}}) 2 .
5sd n

n
D Pγ  =   
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Proof : Consider two copies of  nP , one nP itself 

and other denoted by 'nP . Let 1 2, ,........ nv v v be the 

vertices of nP  and let ' ' '
1 2, ,........ nv v v  be the 

vertices of '
nP . Let 1 2 1, ,........ ne e e −  be the edges of 

the first copy nP  and ' ' '
1 2 1, ,........ ne e e −  be the 

edges of the second copy'nP , where 
' ' '

1 1( , ), ( , )i i i i i ie v v e v v+ += =  for i = 1,2,…n-1.  

Let ( { ,{2}}).sd nG D P= 

Then ( ) 2 , ( ) 4 6V G n E G n= = − and 

' '

'

,{ 2} ,{ 2}
( ) { } { } { } { }i i j j k k

E G e e e e
+ −

= ∪ ∪ ∪   

where 1 1,1 2,3i n j n k n≤ ≤ − ≤ ≤ − ≤ ≤ . 
Let 6.n ≥ 

Consider the set D = 1 2V V∪  where  

'
1 5 2 5 2{ } { },1 1,

5i i

n
V v v i− −

 = ∪ ≤ ≤ −  
'

'
2 1 1

'
2 2

{ , }, 1,2,3(mod5)

{ , }, 4(mod5)

{ , }, 0(mod5)

n n

n n

n n

v v n

V v v n

v v n

− −

− −

 ≡


= ≡
 ≡

 

This set D is  a minimal   dominating set with 
minimum cardinality since for any vertex  v ∈ D 
, D- {v} is not a  dominating set. Thus, some 
vertex u in V-D  is not dominated by any vertex 
in D∪ {v}. Now either u=v or u ∈V-D.  If  u=v, 
then v is an isolated vertex of D. If u∈ V-D  and 
u is not dominated by D - {v}, but is dominated 
by D, then u is adjacent only to vertex v in D, i.e   
N(v) ∪  D  = {v}. 
This implies that the set D described above is of 
minimum cardinality and since 

 D =2
5

n 
  

, it follows that   

( { ,{2}}) 2 .
5sd n

n
D Pγ  =   

 

 
Theorem 2.11. Let n5.≥ Then 

( { ,{3}})sd nD Pγ = 
2

2
5

n + 
  

. 

Proof : Let ( { ,{3}})sd nG D P= We consider the 

vertex set of G as in Theorem 2.10. and edge set  

 ' '

'

,{ 3} { 3} ,
( ) { } { } { } { }i i j j k k

E G e e e e
+ −

= ∪ ∪ ∪   

where 1 1,1 3,1 .i n j n k n≤ ≤ − ≤ ≤ − ≤ ≤ Clearly 

( ) 2 , ( ) 4 8V G n E G n= = − . 

Let n 5.≥ 
Consider the set D = 1 2V V∪  where  

'
1 5 3 5 3

3
{ } { },1 ,

5i i

n
V v v i− −

− = ∪ ≤ ≤   
'

2 '
1 1

{ , }, 2,3,4(mod5)

{ , }, 0,1(mod5)

n n

n n

v v n
V

v v n− −

 ≡= 
≡

 

This set D is  a minimal   dominating set with 
minimum cardinality since for any vertex  v ∈ D 
, D- {v} is not a  dominating set. Thus, some 
vertex u in V-D  is not dominated by any vertex 
in D∪ {v}. Now either u=v or u ∈V-D.  If  u=v, 
then v is an isolated vertex of D. If u∈ V-D  and 
u is not dominated by D - {v}, but is dominated 
by D, then u is adjacent only to vertex v in D, i.e   
N(v) ∪  D  = {v}. 
This implies that the set D described above is of 
minimum cardinality and since  

D =
2

2
5

n + 
  

, it follows that  ( { ,{3}})sd nD Pγ = 

2
2

5

n + 
  

. 

Hence the proof. 
Theorem 2.12. Let n5.≥ Then 

3
(( { ,{2}}))p sd nD Pγ  = 4, 5

6, 6,7

2 2, 8
2

n

n

n
n


 =
 =

  − ≥   

 

Proof :  Let ( { ,{2}})sd nG D P= . We consider the 

vertex set and edge set  of G are as in Theorem 
2.10. 
For n=5, the set 

3pD = ' '
3 4 3 4{ , , , }v v v v  is a 

minimal vertex dominating set with minimum 
cardinality and hence 

3
( )p Gγ =4. 

For n=6, the set 
3pD = ' ' '

3 4 6 3 4 6{ , , , , , }v v v v v v  is a 

minimal vertex dominating set with minimum 
cardinality and hence 

3
( )p Gγ =6. 
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For n=7, the set 
3pD = ' ' '

3 4 7 3 4 7{ , , , , , }v v v v v v  is a 

minimal vertex dominating set with minimum 
cardinality and hence 

3
( )p Gγ =6. 

For n=8, the set 
3pD = ' ' '

3 4 7 3 4 7{ , , , , , }v v v v v v  is a 

minimal vertex dominating set with minimum 
cardinality and hence 

3
( )p Gγ =6. 

 
Figure 2.  The graph 

3 7( ( ,{2})) 6p sdD Pγ = 

Let 9n ≥ . 
Consider the set 

3pD =  
' '

4 1 4 4 1 4

' ' '
4 1 4 4 1 4

' ' '
4 1 1 4 4 1 1 4

{ } { } { } { }, 1,2(mod 4)

{ } { } { } { } { } { }, 3(mod 4)

{ } { } { } { } { } { }, 0(mod 4)

j j j j

j n j j n j

j n j j n j

v v v v n

v v v v v v n

v v v v v v n

− −

− −

− − − −

 ∪ ∪ ∪ ≡
 ∪ ∪ ∪ ∪ ∪ ∪ ≡
 ∪ ∪ ∪ ∪ ∪ ∪ ≡

 

where

1 , 1,2(mod 4)
4

1 , 3(mod 4)
4

1 1, 0(mod 4)
4

n
j n

n
j n

n
j n

  ≤ ≤ ≡   
  ≤ ≤ ≡   


≤ ≤ − ≡


This set 
3pD  is aminimal dominating sets with 

minimum cardinality since for any vertex  v ∈ 

3pD  , 
3pD - {v} is not a 3-path dominating set. 

Thus, some vertex u in V-
3pD   is not dominated 

by any vertex in
3pD ∪ {v}. Now either u=v or u 

∈V-
3pD .  If  u=v, then v is an isolated vertex of 

3pD . If u∈ V-
3pD   and u is not dominated by 

3pD - {v}, but is dominated by 
3pD , then u is 

adjacent only to vertex v in 
3pD ,i.e   N(v) ∪  

3pD   = {v}. 

This implies that the set  
3pD described above is 

of minimum cardinality and since 

3pD =2 2
2

n  −  
it follows that  

3
(( { ,{2}}))p sd nD Pγ = 2 2

2

n  −  
.  

Hence the proof. 

Theorem2.13. Let n5.≥ Then 
3
( { ,{3}})p sd nD Pγ  

= 4 , 5

6 , 6

2 , 7
2

n

n

n
n


 =
 =


  ≥   

 

Proof: : Let ( { ,{3}})sd nG D P= We consider the 

vertex set  and edge set of G are as in Theorem 
2.11. 
For n=5, the set 

3pD = ' '
2 4 2 4{ , , , }v v v v  is a 

minimal vertex dominating set with minimum 
cardinality and hence 

3
( )p Gγ =4. 

For n=6, the set 
3pD = ' ' '

2 4 5 2 4 5{ , , , , , }v v v v v v  is a 

minimal vertex dominating set with minimum 
cardinality and hence 

3
( )p Gγ =6. 
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Figure 3.  The graph 
3 8( ( ,{3})) 8p sdD Pγ = 

Let n 7≥ . 

Consider 

3pD = ' ' '
1 2 1 2 4 2 4 2 2 3 2 3, { , , , }, { } { },1 2

2j j

n
V V where V v v v v V v v j+ +

 ∪ = = ∪ ≤ ≤ −  
 

This set 
3pD  is aminimal dominating sets with 

minimum cardinality since for any vertex  v ∈ 

3pD  , 
3pD - {v} is not a 3-path dominating set. 

Thus, some vertex u in V-
3pD   is not dominated 

by any vertex in
3pD ∪ {v}. Now either u=v or u 

∈V-
3pD .  If  u=v, then v is an isolated vertex of 

3pD . If u∈ V-
3pD   and u is not dominated by 

3pD - {v}, but is dominated by 
3pD , then u is 

adjacent only to vertex v in 
3pD ,  i.e   N(v) ∪  

3pD   = {v}. 

This implies that the set  
3pD described above is 

of minimum cardinality and since 
3pD = 2

2

n 
  

it 

follows that  
3
( { ,{3}})p sd nD Pγ = 2

2

n 
  

. 

Hence the proof.  
 

Theorem2.14. 
4
(( { ,{2}}))p sd nD Pγ = 

 , 6 10
3

(2 2)
2 , 6 5 7 10, 1

3

n
n

n j
j n j j

  ≤ ≤   


+ +  + ≤ ≤ + ≥   

 

Proof:  Let ( { ,{2}})sd nG D P= . We consider the 

vertex set and edge set  of G are as in Theorem 
2.10. 
For n=6, the set 

4pD = ' '
3 4 3 4{ , , , }v v v v  is a 

minimal vertex dominating set with minimum 
cardinality and hence 

4
( )p Gγ =4. 

For n=7, the set 
4pD = ' ' '

3 4 7 3 4 7{ , , , , , }v v v v v v  is a 

minimal vertex dominating set with minimum 
cardinality and hence 

4
( )p Gγ =6. 

For n=8, the set 
4pD = ' ' '

3 4 7 3 4 7{ , , , , , }v v v v v v  is a 

minimal vertex dominating set with minimum 
cardinality and hence 

4
( )p Gγ =6. 

For n=9, the set 
4pD = ' ' '

3 4 7 3 4 7{ , , , , , }v v v v v v  is a 

minimal vertex dominating set with minimum 
cardinality and hence 

4
( )p Gγ =6. 

For n=10, the set 
4pD = 

' ' ' '
3 4 7 10 3 4 7 10{ , , , , , , , }v v v v v v v v  is a minimal vertex 

dominating set with minimum cardinality and 
hence 

4
( )p Gγ =8. 

 
Figure 4.  The graph 

4 8( ( ,{2})) 6p sdD Pγ = 

Let n 11.≥  
Consider 

4pD = 1 2 3V V V∪ ∪ ,. 

 where 
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' ' ' '
1 7 4 7 3 7 4 7 3 7 7

' ' '
2 7 4 7 3 7 4 7 3 7 7

' ' '
3 7 4 7 3 7 4 7 3 7 7

{ , } { , } { , } { , }, 3(mod7),1
7

{ , } { , } { , }, 0,1,2(mod7),1
7

{ , } { , } { , }, 4,5,6(mod

j j j j n n j j

i i i i j j

k k k k k k

n
V v v v v v v v v n j

n
V v v v v v v n i

V v v v v v v n

− − − −

− − − −

− − − −

 = ∪ ∪ ∪ ≡ ≤ ≤   

 = ∪ ∪ ≡ ≤ ≤  
 

= ∪ ∪ ≡ 7),1
7

n
k

 ≤ ≤     
This set 

4pD  is aminimal dominating sets with 

minimum cardinality since for any vertex v ∈ 

4pD  , 
4pD - {v} is not a 4-path dominating set. 

Thus, some vertex u in V-
4pD   is not dominated 

by any vertex in
4pD ∪ {v}. Now either u=v or u 

∈V-
4pD .  If  u=v, then v is an isolated vertex of 

4pD . If u∈ V-
4pD   and u is not dominated by 

4pD - {v}, but is dominated by 
4pD , then u is 

adjacent only to vertex v in 
4pD ,i.e   N(v) ∪  

4pD   = {v}. 

This implies that the set  
4pD described above is 

of minimum cardinality and  
since 

4pD =

(2 2)
2 , 6 5 7 10, 1

3

n j
j n j j

+ +  + ≤ ≤ + ≥  
,  

it follows that   

4
(( { ,{2}}))p sd nD Pγ =

(2 2)
2 , 6 5 7 10, 1

3

n j
j n j j

+ +  + ≤ ≤ + ≥  
. 

Hence the proof. 
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