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Abstract: Let G = (V,E) be a simple connected and undiregpegph. A subset D of V is called a
dominating set of G if every vertex not in D isawgnt to some vertex in D. The domination number of
G denoted by/(G) is the minimal cardinality taken over all dominatisets of G. A dominating set of
G is called a s-path dominating set of @<s<diamG) if every path of length s in G has at least one
vertex in this dominating set. We denote a s-gmtiminating set byD, . The s-path domination
number of G denoted by, (G) is the minimal cardinality taken over all s - pathminating sets of G.

In this paper, we determine s - path domination lmemof the shadow distance graph of the path graph
with specified distance sets.

Keywords: - Dominating set, vertex domination number, s-ghtinination number, Minimal vertex
dominating set.

Introduction: By a graphG=(V,E) we meana A dominating set of G is called a s-path
finite undirected graph without loops and dominating set of G (3<s<diamG) if every
multiple edges. A subset D of V is called a path of length s in G has atleast one vertex m thi
dominating set of G if every vertex not in D is dominating set. We denote a s-path dominating
adjacent to some vertex in D. The dominationset by D, .The s-path domination number of G

number or vertex domination number of G denoted byyps(G) is the minimal cardinality

denoted by y(G) is the minimal cardinality K I h dominati ¢t G B
taken over all dominating sets of G. A vertex vta en over all s-path dominating sets o - By

in a graph G dominates the vertices in its closeoggm'rtl':t?n e;/e?tr)t/)u?-tﬁzﬂc]:or?\?enrggait;ngotstﬁeISAISO
neighbourhood N(v), that is, v is said to 9 '

dominate itself and each of its neighbours. it follows that |D|< |Dps and  hence
For Correspondence: | y(G)|s| Yo, (G)| :
uvijaychandrakumar@reva.edu.in. Let D be the set of all distances
Received on: May 2018 between distinct pairs of vertices in G and let
Accepted after revision: June 2018 D, (called the distance set) be a subset of D. The
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distance graph of G denoted IYG,D,) is the
graph having the same vertex set as that of G an

two vertices u and v are adjacent
D(G,D,)wheneverd ¢ v Y1 D,.

Theorem  2.3. For any

W <¥(G)</, (G)

graph G,
_n_
1+A(G)

Proof: LetD, be s-path dominating set of G.

The shadow distance graph of G, denoted byE,ch yertex dominates at most itself and

D, (G,D,)is constructed from G with the

following conditions:
i) consider two copies of G say G itself a@d

i) if udOV(G) (first copy) then we denote the
corresponding vertex asi OV (G) (second

copy) '
i) the vertex set dd ,(G,D,) isV(G)IV(G)
iv) the edge set of
D, (G,D,)isE(G) U E(G) O E, whereEis the
set of all edges between two distinct vertices
udV(G) andv OV(G) that satisfy the
conditiond(u,v) D, in G.

Vi V2 V3 Vi Vs
voov % v %

Figurel. The graphDg(R,,{2})
Main Results

Theorem 2.1. If G is a graph with no isolated Dy,

vertices, theny(G)<y, (G)< 2

Proof: LetD, is a minimal dominating set of G.

Every vertex in D, adjacent with at least one
vertex in V-D . Hence VD, is a dominating

<0,

set andy(G)<y, (G)< min{|DpS| V-D,

Theorem 2.2.For any graph G,
A(G)
n+1-(0(G)-1)——==
@@~V

¥(G)=y, (G)< 5

Proof : The upper bound is immediate.

www.johronline.com

A(G) other vertices. Hence the result.

The following results are immediate from the
definition
Theorem 2.4. Let n=3.

v,.(P) :E] 3<s<diamP,

Then

We recall the following result related (G) .
Theorem 2.5. [5] A dominating set D is a
minimal dominating set if and only if for each
vertex v in D, one of the following condition
holds:

)] v is an isolated vertex of

D

i)  there exists a vertex u
UVv-D such that
N(u)n D={v}

An analogous result related to s-path domination
is stated below;
Theorem 2.9. A dominating s&, is a minimal

dominating set if and only if for each vertex v in
, one of the following condition holds:

)] v is an isolated vertex of

Dps
i)  there exists a vertex u
OV-D,, such that

N(u)n D, :{V}

We first provide below the results for vertex
domination number of the shadow distance graph
of the path graph with specified distance sets.

Theorem 2.10. Let n5.Then

V(DL{P2)) 2 [g]
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Proof : Consider two copies of,, one P, itself E(G)={e} { & O e 3 0et,

and other denoted bR, . Let v, Vv,,....... v,be the where 1<i<n-11<j<n- 3,k<k<n Clearly
vertices of P, and let v ,v,,....... v, be the |V(G)|:2n,|E(G)|: 4n- 8.
vertices of P, . Lete,e,,....... e_, be the edges of Let n=5.
the first copy P, and €,,€,,.....e, , be the Considerthe setD ¥ 0V, where
edges of the second coBy, where V,={vg_ } V. }1 <i< [n_‘ﬂ
6 = (V) Vi), € = (Vi Vi) fori=1.2,...n-1. >
LetG = (Do {P, {21, v, = {{Vn’ vah - n=2.3.4(mods)
ThenV(G)| = 2n,[E(G) = 4n- 6and Vs Vo N=0.1(mod5)

This set D is a minimal dominating set with
minimum cardinality since for any vertex (¥ D

EG)={gf A& T e } De,}

wherel<i<n-11<j<n- 2,¥Xk<n. , D- {v} is not a dominating set. Thus, some
Let n>6. vertex u in V-D is not dominated by any vertex
Consider the set D ¥, OV, where in DU {_v}. NQW either u=v or utJV-D. If u=v,
N then v is an isolated vertex of D. Ifiuv-D and
V,={vy_} vy}l <i< [——l 1, u is not dominated by D - {v}, but is dominated
5 by D, then u is adjacent only to vertex vin D, i.e
{v,Vv}, n=l,2,3(mod5) N(v) U D ={v}.

This implies that the set D described above is of
minimum cardinality and since

|D|:2[%21, it follows that y(D_{P.{3}}) =

V, =V, , V.3, n=4(mod5)
{V,.» V.3, n=0(mod5)

This set D is a minimal dominating set with
minimum cardinality since for any vertex (¥ D n+2

, D- {v} is not a dominating set. Thus, some [—1
vertex u in V-D is not dominated by any vertex
in DO {v}. Now either u=v or udV-D. If u=v,
then v is an isolated vertex of D. Ifluv-D and

u is not dominated by D - {v}, but is dominated

Hence the proof.
Theorem 2.12. Let n5.Then

by D, then u is adjacent only to vertex v in D, i.e ¥y, ((Du{PF.{2}})) = Z‘ :_:: ;
N(v) O D ={v}. L
This implies that the set D described above is of 2{21—2, n>8
minimum cardinality and since _
n _ Proof : LetG=(D_{P,{2}}) . We consider the
|D|:2[g—l’ it follows that vertex set and edge set of G are as in Theorem
2.10.
YD {P.{2}}) 2 E} For n=5, the setD, = {v,V,V,vj} is a

minimal vertex dominating set with minimum

Theorem  2.11. Let =a5.Then cardinality and hencg,, (G) =4.

_ [n+2 For n=6, the seD, = {V, V, Ve V5V,V ¢ IS a
VDot Pt = 2[ 5 1 minimal vertex dominating set with minimum
Proof : Let G=(D_{P,{3}})) We consider the cardinality and hencg, (G) =6.

vertex set of G as in Theorem 2.10. and edge set
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For n=7, the seD, = {v, Vv, V,V,V,V 3} isa

minimal vertex dominating set with minimum

cardinality and hencg, (G) =6.
For n=8, the seD, = {V, v, V,V,V,V} is a

minimal vertex dominating set with minimum

cardinality and hencg, (G) =6.

Consider the seb, =
{V4j—j} Hq VA]i { V'4j}-1 { \}’41'

{v .t Qv 00V, O v {ON{OW,
{Vyd BV, 00y 0 v {0V, {0,

This setD, is aminimal dominating sets with
minimum cardinality since for any vertex ¥
D,, , D, - {v}is not a 3-path dominating set.
Thus, some vertex u in \D,,  is not dominated
by any vertex iD, U {v}. Now either u=v or u
OV-D, .
D, . Ifull V-D, and u is not dominated by
D, - {v}, but is dominated byD, , then u is

N(v) U

If u=v, then v is an isolated vertex of

adjacent only to vertex v i, ,i.e
D, ={v}

This implies that the setD, described above is
of minimum cardinality  and since

n .
|Dp3|:2[§—|_2't
Y, (DL{P.{2}) = zm-z.

Hence the proof.

follows that

www.johronline.com
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Figure2. The graphy, (D (P,.{2})) =6

Let n=9.

rn=2(mod 4)
3(mod 4)
O(mod 4)

1< SBJ n=12(mod4

wheregjl< j < [—J , n=3(mod4)

1< s%—l, n= 0(mod 4)
Theorem2.13. Let 85.Then y, (Dy{R,{3}})

= 4, n=>5
6, n==6

Proof: : Let G=(D4{P,{3}}) We consider the

vertex set and edge set of G are as in Theorem
2.11.

For n=5, the setD, = {v,V,V,Vv} is a
minimal vertex dominating set with minimum
cardinality and hencg, (G) =4.

For n=6, the seD,, = {Vv, v, V4,V ,V,V } is a
minimal vertex dominating set with minimum
cardinality and hencg, (G) =6.

Vi V2 V3 Va4 Vs Ve A% Vs
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Figure3. The graphy, (D (R;.{3})) =8 Consider
Letn>7.
Co . . _|n
D, =V, 0V,, where V,={v, v, v,V },V,={v, 5 v ,} 1 <] sh]%
This setD, is aminimal dominating sets with  Proof: LetG=(D4{P,{2}}) . We consider the
minimum cardinality since for any vertex v vertex set and edge set of G are as in Theorem

D, . D, - {v} is not a 3-path dominating set. ~ 2.10.
For n=6, the setD, = {v,v,Vv,Vv} is a

Thus, some vertex u in \B,  is not dominated
by any vertex iD_ [ {v}. Now either u=v or u minimal vertex dominating set with minimum
P ' cardinality and hencg, (G) =4.

LUV-D, . If u=v, then v is an isolated vertex of L
’ For n=7, the seD,, = {v, v, v, V,V,V } is a

minimal vertex dominating set with minimum
cardinality and hencg, (G)=6.

D, . Iful V-D, and u is not dominated by
D, - {v}, but is dominated byD, , then u is

adjacent only to vertex v i, i.e N(v)U For n=8, the seD, = {V, V Vo, VoV 4V } s @

D, ={v} minimal vertex dominating set with minimum
This implies that the setD, described above is  cardinality and hencg, (G) =6.

of minimum cardinality and sinc|®p3|=2[ﬂ—l it For n=9, the seD,, = {v, v, v, V,V,V 3} is a
2 minimal vertex dominating set with minimum
cardinality and hencg, (G) =6.

For n=10, the set D =

Ps
{Vy V, V,, VoV 5V ,V ,V  } iS @ minimal vertex
dominating set with minimum cardinality and
hencey, (G)=8.

follows that y, (Do{P,{3) = 2[21

Hence the proof.

Theorem2.14y, ((D4{R,{2}})

PW 6<n<10

3|’
2{%J,6j+5sns 7j+ 10, >
Vi V2 Vs Vi Vs Vs V7 Vs
v vh Vs V' V's V's V4 V's

Figure4. The graphy, (Dy(R.{2})) =6
Let n>11.
ConsiderD, =V, 0V, 0V,
where
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Vi= Vo Vi d Vi, Ve B v, 0 vy vy n3mod7),1 < Sng

V, ={ Vo Vad BV 1V 1 [ Vi Vl}q

ne,1,2(mod7),1 sisH

Vs ={Va o Va-d X VauV s @ Vg V) n#56(mod 7),1<ks< [g—‘

This setD, is aminimal dominating sets with
minimum cardinality since for any vertex v

D,, » D, - {v} is not a 4-path dominating set.
Thus, some vertex u in \B,  is not dominated
by any vertex iD, U {v}. Now either u=v or u

LV-D,, .
D,,- Iful V-D, and u is not dominated by

If u=v, then v is an isolated vertex of

D,,- {v}, but is dominated byD, , then u is
adjacent only to vertex v iD, ,i.e  N(v) U
D, ={v}

This implies that the setD, described above is

of minimum cardinality and
since
|DP4

2{%“2)}6“5“‘5 7j+10j= |

it follows that

Y, (De{Ru{2}})) =
2[WJ 6j+5<n< 7j+ 10j > -

Hence the proof.
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