Journal Of Harmonized Research (JOHR)

Journal Of Harmonized Research in Applied Sciences 6(2), 2018, 49-54

ISSN 2321 - 7456

Original Research Article

ONE RAISED PRODUCT PRIME LABELING OF SOME CYCLE RELATED GRAPHS

Sunoj B S^{1*}, Mathew Varkey T K²

¹ Department of Mathematics, Government Polytechnic College, Attingal, Kerala, India ² Department of Mathematics, TKM College of Engineering, Kollam, Kerala, India

Abstract: One raised product prime labeling of a graph is the labeling of the vertices with $\{1,2--,p\}$ and the edges with product of the labels of the incident vertices plus 1. The greatest common incidence number of a vertex (*gcin*) of degree greater than one is defined as the greatest common divisor of the labels of the incident edges. If the *gcin* of each vertex of degree greater than one is one, then the graph admits one raised product prime labeling. Here we investigated some cycle related graphs for one raised product prime labeling.

Keywords: Graph labeling; product; prime labeling; prime graphs; cycle.

Introduction: All graphs in this paper are simple, finite and undirected. The symbol V(G) and E(G) denote the vertex set and edge set of a graph G. The graph whose cardinality of the vertex set is called the order of G, denoted by p and the cardinality of the edge set is called the size of the graph G, denoted by q. A graph with p vertices and q edges is called a (p,q)- graph.

A graph labeling is an assignment of integers to the vertices or edges. Some basic notations and definitions are taken from [1],[2],[3] and [4] . Some basic concepts are taken from Frank Harary [1]. In this paper we investigated one raised product prime labeling of some cycle

For Correspondence:
spalazhi@yahoo.com.
Received on: May 2018
Accepted after revision: May 2018
DOI: 10.30876/JOHR.6.2.2018.49-54

related graphs.

Definition: 1.1 Let G be a graph with p vertices and q edges. The greatest common incidence number (*gcin*) of a vertex of degree greater than or equal to 2, is the greatest common divisor (gcd) of the labels of the incident edges.

Main Results

Definition 2.1 Let G = (V(G), E(G)) be a graph with p vertices and q edges.

Define a bijection $f: V(G) \rightarrow \{1, 2, \dots, p\}$ by $f(v_i) = i$, for every i from 1 to p and define a 1-1

mapping f^*_{orpp} : E(G) \rightarrow set of natural numbers N by $f^*_{orpp}(uv) = f(u)f(v) + 1$.

The induced function f^*_{orpp} is said to be one raised product prime labeling, if for each vertex of degree at least 2, the *gcin* of the labels of the incident edges is 1.

Definition 2.2 A graph which admits one raised product prime labeling is called one raised product prime graph.

Theorem 2.1 Cycle C_n (n >2) admits one raised product prime labeling, if $(n+1) \not\equiv 0 \pmod{3}$ and n is odd. **Proof:** Let $G = C_n$ and let v_1, v_2, \dots, v_n are the vertices of G. Here |V(G)| = n and |E(G)| = n. Define a function $f: V \rightarrow \{1, 2, \dots, n\}$ by $f(v_i) = i$, $i = 1, 2, \dots, n$ Clearly f is a bijection. For the vertex labeling f, the induced edge labeling f^*_{orpp} is defined as follows $f_{orpv}^{*}(v_{i} v_{i+1}) = i^{2} + i + 1$ $i = 1, 2, \dots, n-1$. $f^*_{orvv}(v_1 v_n) = n+1.$ Clearly f^*_{orpp} is an injection. gcd of $\{f_{orpp}^*(v_1 v_2),$ gcin of $(v_1) =$ $f^*_{orvv}(v_1 v_n)$ = gcd of {3, n+1} = 1. $gcin \text{ of } (v_{i+1}) = \text{gcd of } \{f^*_{orpp}(v_i v_{i+1}),$ $f_{orvv}^{*}(v_{i+1} v_{i+2})$ = gcd of { i^2+i+1 , i^2+3i+3 } = gcd of {2i+2, i²+i+1} = gcd of {i+1,i(i+1)+1} = 1. i = 1, 2, ---, n-2.gcd of $\{f_{arm}^*(v_1 v_n),$ *gcin* of (v_n) \equiv $f^*_{orpp}(v_{n-1} v_n)\}$ = gcd of {n+1, n²-n+1} = gcd of {3, n+1} = 1.

So, *gcin* of each vertex of degree greater than one is 1.

Hence C_n , admits one raised product prime labeling.

Example 2.1 $G = C_7$

Theorem 2.2 Let G be the graph obtained by duplicating one edge of cycle C_n (n >2) by a vertex. G admits one raised product prime labeling, if $(n+2) \not\equiv 0 \pmod{6}$ and n is even. **Proof:** Let G be the graph and let v_1, v_2, \dots, v_{n+1} are the vertices of G. Here |V(G)| = n+1 and |E(G)| = n+2. Define a function $f : V \rightarrow \{1, 2, \dots, n+1\}$ by $f(v_i) = i$, $i = 1, 2, \dots, n+1$. Clearly f is a bijection. For the vertex labeling f, the induced edge labeling f^*_{orpp} is defined as follows $f^*_{orpp}(v_i v_{i+1}) = i^2 + i + 1,$ i = 1, 2, ---, n. $f^*_{orvv}(v_1 v_3) = 4$ $f_{orpp}^{*}(v_{1} v_{n+1}) = n+2.$ Clearly f^*_{orpp} is an injection. *gcin* of $(v_1) =$ gcd of $\{f^*_{orvv}(v_1 v_2),$ $f^*_{orpp}(v_1 v_3)$ = gcd of {3, 4}=1. gcd of $\{f_{orpp}^*(v_i v_{i+1}),$ *gcin* of $(v_{i+1}) =$ $f_{orpp}^{*}(v_{i+1} v_{i+2}) = 1,$ i = 1, 2, ---, n-1. $gcin \text{ of } (v_{n+1}) = \text{gcd of } \{f^*_{orpp}(v_1 v_{n+1}),$ $f^*_{orpp}(v_n, v_{n+1}) = \text{gcd of } \{n+2, n^2+n+1\}$ = gcd of {3, n+2} = 1.So, gcin of each vertex of degree greater than one is 1.

Hence G, admits one raised product prime labeling.

Example 2.2 Let G be the graph obtained by duplicating one edge of cycle C_6 by a vertex.

Theorem 2.3 Duplicating one vertex of cycle C_n (n >2) admits one raised product prime labeling, if (n-2) $\not\equiv 0 \pmod{13}$ and n is odd.

Proof: Let G be the graph and let v_1, v_2, \dots, v_{n+2} are the vertices of G.

Here |V(G)| = n+2 and |E(G)| = n+3. Define a function $f: V \rightarrow \{1, 2, \dots, n+2\}$ by $f(v_i) = i$, $i = 1, 2, \dots, n+2$. Clearly f is a bijection. For the vertex labeling f, the induced edge labeling f_{orpp}^* is defined as follows $f_{orpp}^{*}(v_{i} v_{i+1}) = i(i+1)+1,$ $i = 1, 2, \dots, n+1$. $f^*_{orvv}(v_1 v_3) = 4$ $f_{nrnn}^{*}(v_{3} v_{n+2}) = 3n+7$ Clearly f_{orpp}^* is an injection. $gcin \text{ of } (v_1) = gcd \text{ of } \{ f^*_{orpp}(v_1 v_2),$ $f^*_{orpp}(v_1 v_3) = \text{gcd of } \{3, 4\} = 1.$ gcin of (v_{i+1}) = gcd of $\{f_{orpp}^*(v_i v_{i+1}),$ $f_{orpp}^{*}(v_{i+1} v_{i+2}) = 1,$ i = 1.2....n

 $gcin \text{ of } (v_{n+2}) = gcd \text{ of } \{f^*_{orpp}(v_3 v_{n+2}), \\ f^*_{orpp}(v_{n+1} v_{n+2})\} = gcd \text{ of } \{3n+7, n^2+3n+3\} \\ = gcd \text{ of } \{3n+7, n^2-4\} \\ = gcd \text{ of } \{n-2, 3n+7\} \\ = gcd \text{ of } \{n-2, 13\} = 1.$

So, *gcin* of each vertex of degree greater than one is 1.

Hence G, admits one raised product prime labeling.

Example 2.3 Let G be the graph obtained by duplicating one vertex of cycle C₇ by an edge.

Theorem 2.4 Let G be the graph obtained by joining path P_m to cycle C_n . G admits one raised product prime labeling, if $(n+1) \not\equiv 0 \pmod{3}$ and n is odd. **Proof:** Let G be the graph and let $v_1, v_2, \dots, v_{n+m-1}$

are the vertices of G. Here |V(G)| = n+m-1 and |E(G)| = n+m-1. Define a function $f: V \rightarrow \{1,2,\dots,n+m-1\}$ by $f(v_i) = i, i = 1,2,\dots,n+m-1$

Clearly f is a bijection. For the vertex labeling f, the induced edge labeling f^*_{orpp} is defined as follows $f^*_{orpp}(v_i \ v_{i+1}) = i(i+1)+1$,

 $\begin{aligned} f^*_{orpp}(v_1 v_n) &= n+1. \\ \text{Clearly } f^*_{orpp} \text{ is an injection.} \\ gcin \text{ of } (v_1) &= \text{gcd of } \{f^*_{orpp}(v_1 v_2), \\ f^*_{orpp}(v_1 v_n)\} \end{aligned}$

 $= \gcd \text{ of } \{3, n+1\} = 1.$ gcin of (v_{i+1}) = gcd of { $f_{orpp}^{*}(v_{i} v_{i+1}),$ $f_{orpp}^{*}(v_{i+1} v_{i+2})$ } = 1,

i = 1,2,--,n+m-3.So, *gcin* of each vertex of degree greater than one is 1. Hence G, admits one raised product prime labeling.

Example 2.4 Let G be the graph obtained by joining path P₄ to cycle C₇.

fig – 2.4

Theorem 2.5 Let G be the graph obtained by joining two copies of path P_m to two consecutive vertices cycle C_n . G admits one raised product prime labeling, if m and n are odd.

Proof: Let G be the graph and let $v_1, v_2, \dots, v_{n+2m-2}$ are the vertices of G.

Here |V(G)| = n+2m-2 and |E(G)| = n+2m-2. Define a function $f: V \rightarrow \{1,2,\dots,n+2m-2\}$ by $f(v_i) = i, i = 1,2,\dots,n+2m-2$

Clearly f is a bijection.

For the vertex labeling f, the induced edge labeling f^*_{orpp} is defined as follows $f^*_{orpp}(v_i v_{i+1}) = i(i+1)+1$,

$$i = 1, 2, \dots, n+2m-3.$$

 $f^*_{orpp}(v_m v_{m+n-1}) = m(m+n-1)+1.$

Clearly f_{orpp}^* is an injection.

 $gcin \text{ of } (v_{i+1}) = gcd \text{ of } \{f^*_{orpp}(v_i v_{i+1}), f^*_{orpp}(v_{i+1} v_{i+2})\} = 1,$

i = 1,2,--,n+2m-4.So, *gcin* of each vertex of degree greater than one is 1.

Hence G, admits one raised product prime labeling.

Example 2.5 Let G be the graph obtained by joining two copies of path P_5 to two consecutive vertices cycle C_5 .

fig 2.5

Theorem 2.6 Let G be the graph obtained by joining the apex vertex of star $K_{1,n}$ to any one vertex of cycle C_n . G admits one raised product prime labeling, if $(n+1) \not\equiv 0 \pmod{3}$ and n is odd. **Proof:** Let G be the graph and let v_1, v_2, \dots, v_{2n} are the vertices of G.

Here |V(G)| = 2n and |E(G)| = 2n.

Define a function $f: V \rightarrow \{1, 2, \dots, 2n\}$ by $f(v_i) = i, i = 1, 2, \dots, 2n$.

Clearly f is a bijection.

For the vertex labeling f, the induced edge labeling f^*_{orpp} is defined as follows $f^*_{arm}(v, v_{i+1}) = i^2 + i + 1$.

$$i = 1, 2, \dots, n-1.$$

$$f^*_{orpp}(v_1 v_n) = n+1$$

$$f^*_{orpp}(v_n v_{n+i}) = n^2 + ni + 1,$$

i = 1,2,---,n.

Clearly f_{orpp}^* is an injection. gcin of $(v_1) = gcd$ of {f

 $gcin \text{ of } (v_1) = gcd \text{ of } \{f^*_{orpp}(v_1 v_2), f^*_{orpp}(v_1 v_n)\} = gcd \text{ of } \{3, n+1\} = 1.$

 $\begin{array}{ll} gcin \text{ of } (v_{i+1} = \gcd & \text{ of } & \{f^*_{orpp}(v_i v_{i+1}), \\ f^*_{orpp}(v_{i+1} v_{i+2})\} = 1, \end{array}$

i = 1, 2, ..., n-1.So, *gcin* of each vertex of degree greater than one is 1.

Hence G, admits one raised product prime labeling.

Example 2.6 Let G be the graph obtained by joining the apex vertex of star $K_{1,n}$ to any one vertex of cycle C_7

Theorem 2.7 Let G be the graph obtained by joining cycle C₃ to each vertex of path P_n G admits one raised product prime labeling. **Proof:** Let G be the graph and let v_1, v_2, \dots, v_{3n} are the vertices of G. Here |V(G)| = 3n and |E(G)| = 4n-1. Define a function $f: V \rightarrow \{1, 2, \dots, 3n\}$ by $f(v_i) = i$, i = 1, 2, --, 3n. Clearly f is a bijection. For the vertex labeling f, the induced edge labeling f^*_{orpp} is defined as follows $f^*_{orpp}(v_{3i-2}, v_{3i-1}) = 9i^2 - 9i + 3,$ i = 1, 2, ---, n. $f^*_{orpp}(v_{3i-2} v_{3i}) = 9i^2 - 6i + 1,$ i = 1,2,---,n. $f^*_{orpp}(v_{3i-1} v_{3i}) = 9i^2 - 3i + 1,$ i = 1,2,---,n. $f^*_{orpp}(v_{3i-1} v_{3i+2}) = 9i^2 + 3i - 1,$ i = 1, 2, ---, n-1. Clearly f^*_{orpp} is an injection. *gcin* of (v_{3i-2}) gcd of $\{f_{orop}^*(v_{3i-2} v_{3i-1}), f_{orop}^*(v_{3i-2} v_{3i})\}$ = gcd of {9i²-9i+3, 9i²-6i+1} = gcd of {3i-2, 9i²-9i+3}

$$= \gcd \text{ of } \{ 3i-2, (3i-2)(3i-1)+1 \}$$

$$= 1, \qquad i = 1, 2, \dots, n.$$

$$gcin \text{ of } (v_{3i-1}) = \gcd \text{ of } \{ g_{orpp}^{*}(v_{3i-2} v_{3i-1}), f_{orpp}^{*}(v_{3i-1} v_{3i}) \}$$

$$= \gcd \text{ of } \{ 9i^{2}-9i+3, 9i^{2}-3i+1 \}$$

$$= \gcd \text{ of } \{ 6i-2, 9i^{2}-9i+3 \}$$

$$= \gcd \text{ of } \{ 3i-1, (3i-2)(3i-1)+1 \}$$

$$= 1, \qquad i = 1, 2, \dots, n.$$

$$gcin \quad \text{ of } (v_{3i}) = \gcd \text{ of } \{ 9i^{2}-6i+1, 9i^{2}-3i+1 \}$$

$$= \gcd \text{ of } \{ 9i^{2}-6i+1, 9i^{2}-3i+1 \}$$

$$= \gcd \text{ of } \{ 3i, (3i-2)(3i)+1 \}$$

$$= 1, \qquad i = 1, 2, \dots, n.$$

$$gcid \text{ of } \{ 3i, (3i-2)(3i)+1 \}$$

$$= 1, \qquad i = 1, 2, \dots, n.$$

So, *gcin* of each vertex of degree greater than one is 1.

Example 2.7 Let G be the graph obtained by joining cycle C_3 to each vertex of path P_3

Hence G, admits one raised product prime labeling.

References

- [1] Apostol. Tom M, Introduction to Analytic Number Theory, Narosa, (1998).
- [2] F Harary, Graph Theory, Addison-Wesley,Reading, Mass, (1972
- [3] Joseph A Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics (2015), #DS6, Pages 1 – 389.
- [4] T K Mathew Varkey, Some Graph Theoretic Operations Associated with Graph Labelings, PhD Thesis, University of Kerala 2000.