
 Patel S., J. Harmoniz. Res. Appl. Sci. 2017, 5(4), 166-171

www.johronline.com 166 | P a g e

For Correspondence:
patelshrikant@rediffmail.com.
Received on: October 2017
Accepted after revision: December 2017
Downloaded from: www.johronline.com

Introduction: Writing software is a complex
business - not only do you have to get the
enterprise logic of the application correct,
typically you also have to deal with multiple
other concerns at the same time, such as "what
should happen if something goes wrong", "how
should I make sure we know what is happening
during execution", "how to enforce security
throughout my application" and in some

languages "how do I handle memory" or "when
should I free up memory", etc.
One of the principal advantages of object-
oriented programming1 techniques over
procedural programming techniques is that they
enable programmers to create modules that do
not require to be changed when a new kind of
object is added. A programmer can simply
create a new object that inherits many of
its features from existing objects. This makes
object-oriented programs easier to modify.
Object-oriented programming that uses classes
is from time to time called class-based
programming, while prototype-based
programming does not typically use classes. As
a result, a significantly dissimilar yet equivalent

 Journal Of Harmonized Research in Applied Sciences
 5(4), 2017, 166-171

CODE REUSABILITY WITH ASPECT USING OBJECT ORIENTED PROGRAMMING
LANGUAGE

 Shrikant Patel

BPIBS, Delhi, India

Original Research Article

Journal Of Harmonized Research (JOHR)

ISSN 2321 – 7456

Abstract: A standout amongst the significant profits of Object-Oriented programming is that it helps
legacy similarly as an instrument to code reuse incremental adjustment, Well-established. Object-
oriented innovations in white-box frameworks aggravate exhaustively use. Aspect-Oriented modifying
(AOP) may be another technology, which backs an additional development instrument that’s
intentional may be empower the superior detachment of worries. Across the world useful perspective
dialects in Aspect would expand upon object-oriented modifying languages, and in that route it will be
conceivable with consolidate both development instruments. This paper reveals the implementation of
aspect in object oriented programming language to overcome the problem of cross cutting concerns and
aspects are used to less memory occupancy and to increase the processing speed.

Keyword: AOP, OOP, aspect, cross- cutting, Aspect, Rapid development.

 Patel S., J. Harmoniz. Res. Appl. Sci. 2017, 5(4), 166-171

www.johronline.com 167 | P a g e

terminology is used to define the concept
of object and instance. This paper will solve
some problems of software test by introducing a
new programming thought named AOP (Aspect
Oriented Programming). An aspect is a ordinary
feature that's typically scattered across methods,
classes, object hierarchies, or even entire object
models. In AOP, a feature like metrics is called
a crosscutting concern, as it's a behavior that
"cuts" across numerous points in your object
models, yet is specifically different. As a
development style, AOP recommends that you
abstract and sum up crosscutting concerns.
Problems caused by cross cutting concerns:
Code Tangling: Each module implements one
fundamental concern and parts of other cross-
cutting concerns.
Code Scattering: Each cross-cutting concern is
implemented by more than a few fragments
placed in dissimilar parts of the system.
Consequences:
Low quality: code tangling facilitates errors.
Low traceability: where is the code that
implements a given concern? Which concern is
implemented by this code?
Low reusability: each module includes
fragments that are not related to its job.
Low evolvability: of modules that are
fragmented and of modules that include
fragments of other modules.
 Aspect Oriented Programming: In
registering, aspect oriented Programming (AOP)
is a programming worldview that plans to
expand seclusion by permitting the detachment
of cross-cutting concerns. It does as such by
adding extra conduct to existing code (guidance)
without changing the code itself; rather
independently determining which code is altered
through a "pointcut" determination, for example,
"log all capacity calls when the capacity's name
starts with 'set'. This permits practices that are
not vital to the business rationale, (for example,
logging) to be added to a program without
jumbling the code center to the usefulness. AOP
shapes a reason for perspective situated
programming improvement. Aspect Oriented

Programming helps overcome system level
coding i.e. Logging, Transaction or Security
management problem by centralizing these
cross-cutting concerns.
Aspect Oriented Programming tends to every
angle independently in a measured manner with
insignificant coupling and duplication of code.
This particular approach additionally advances
code reuse by utilizing a business rationale
worry with a different logger aspect.

.

 Fig. 1 (a)

 Fig 1 (b)
Fast improvement of transformative models
utilizing OOP by concentrating just on the
business rationale by excluding cross-cutting

 Patel S., J. Harmoniz. Res. Appl. Sci. 2017, 5(4), 166-171

www.johronline.com 168 | P a g e

concerns, for example, security, exchange,
logging and so on. Once the model is
acknowledged, extra concerns like security,
logging, evaluating and so on can be meshed
into the model code to move it into a creation
standard application.
Developers can concentrate on one aspect at
a time rather than having to think
simultaneously about business logic, security,
logging, performance, multithread safety etc.
Different aspects can be developed by
different developers based on their key
strengths.
Aspect J (Aspect Implementation for Java):
AspectJ2 is presently the most complete
accomplishment of an AOP language for Java.
In practical terms, it is an expansion to Java that
treats AOP concepts as first-class elements of
the language. It allows aspects to be
implemented as part of a Java based application
using known Eclipse based tools.
As AspectJ is an extension to Java, Java is the
implementation language for the constructs that
comprise an Aspect. That is, you use Java to
implement whatever behavior the Aspect should
provide. A set of rules is then used to determine
how to weave the aspect into the main body of
your Java application. These rules are
implemented by pointcuts, join points, and
advice. A pointcut specifies what join points
there are. In turn, a join point defines where in a
Java programs' execution the aspect should be
applied and advice is the implementation of
what to do at that point.
Furthermore, AspectJ2 is viewed as Likewise an
execution with versatility properties. This
characteristic permits programming particular
architects to utilize it on extensive scale
frameworks with great come about. It aides on
accomplish a respectable diminishment done
scattered code with a low execution overhead.
These effects help that development from
claiming AspectJ likewise an usage for AOP.
AspectJ3 meets expectations with those taking
after procedure: Firstly, that java code that
reflects the benefits of the business rationale for

requisition is produced. Secondly, the
viewpoints need aid formed previously,
differentiate units (source code files) for
components for example, join-points, point-cuts
Also exhortation.
Implementation with using AspectJ:
We implement aspects using Cybercafe
Example where the aspects can configure4 at
only one time and can use automatically when
required so that same method only configured
and no need to call again and again as in object
oriented programming concept, therefore the
memory occupied by the program is lesser in
aspect oriented programming than object
oriented concepts.
CyberCafe file 1: CyberCafe1.java
package cybercafe;
import java.util.Scanner;
import java.util.Calendar;
import java.util.GregorianCalendar;
public class CyberCafe {
 public static Scanner Sc= new
Scanner(System.in);
 static int
Starthour,Startmin,Endhour,Endmin;
 static GregorianCalendar cal= new
GregorianCalendar();
 public static void main(String[] args) throws
Exception
 {
 computer client[]=new computer[10];
 int i;
 for(i=0;i<10;i++) {
 client[i]=new computer(i);
 }
 do {
 System.out.println("\t\t\t1.list of free
computers\n\t\t\t2.assign computers by
id\n\t\t\t3.logout System by id\n\t\t\t4.exit");
 int num;
 num=Sc.nextInt();
 switch(num) {
 case 1:{
 for(int j=0;j<10;j++)
 {
 if(client[j].check==true) {

 Patel S., J. Harmoniz. Res. Appl. Sci. 2017, 5(4), 166-171

www.johronline.com 169 | P a g e

 System.out.println("pc no.:->"+j);
 }
 }
 break;
 }
 case 2:
 {
 for(int j=0;j<10;j++) {
 if(client[j].check==true) {
 System.out.println("pc no.:->"+j);
 }
 }
 System.out.println("Enter no of pc to
assign....");
 int assign=Sc.nextInt();

Starthour=cal.get(Calendar.HOUR_OF_DAY);
 Startmin=cal.get(Calendar.MINUTE);

client[assign].login(Starthour,Startmin);
 break;
 }
 case 3: {
 for(int j=0;j<10;j++) {
 if(!client[j].check==true) {
 System.out.println("pc no.:->"+j);
 }
 }
 System.out.println("Enter no of pc to
free....");
 int free=Sc.nextInt();

Endhour=cal.get(Calendar.HOUR_OF_DAY);
 Endmin=cal.get(Calendar.MINUTE);
 client[free].logout(Endhour,Endmin);
 break;
 }
 case 4: {
 System.exit(0);
 break;
 }
 default : {
 System.out.println("INVALID
INPUT....");
 }
 }

 }while(true);
 }
}
CyberCafe file 2:CyberCafe2.java
package cybercafe;
import static cybercafe.CyberCafe.Sc;
public class computer {
 boolean check=true;
 int id;
 int pass;
 public computer(int id) {
 this.id=id;
 this.pass=id;
 }
 void login(int sthour,int stmin) {
 System.out.print("Enter your id ...");
 if(id==Sc.nextInt()) {
 System.out.print("Enter your pass...");
 if(pass== Sc.nextInt()) {
 check=false;
 }
 }
 }
 void logout(int edhour,int edmin) {
 if(!check) {
 check=true;
 }
 else {
 System.out.print("First you login then
Logout....");
 }
 }
}

Aspects file 3:CyberCafe.aj
package cybercafe;
public aspect charges
{
int
starthour,startmin,endhour,endmin,snetmin,enet
min;
 pointcut captureCallParameter1(int sthour , int
stmin):
call(void cybercafe.computer.login(int,int))&&
args(sthour,stmin);

 Patel S., J. Harmoniz. Res. Appl. Sci. 2017, 5(4), 166-171

www.johronline.com 170 | P a g e

 before(int sthour, int stmin) :
captureCallParameter1(sthour,stmin) {
 this.starthour=sthour;
 this.startmin=stmin;
 this.snetmin=(starthour*60);
 this.snetmin=snetmin+startmin;
 }
pointcut captureCallParameter2(int edhour , int
edmin):
call(void cybercafe.computer.logout(int,int))&&
args(edhour,edmin);
 before(int edhour, int edmin) :
captureCallParameter2(edhour,edmin) {
 this.endhour=edhour;
 this.endmin=edmin;
 this.enetmin=(endhour*60);
 this.enetmin=enetmin+endmin;
 System.out.println("hour:->"+(enetmin-
snetmin)/60);
 System.out.println("min:->"+(((enetmin-
snetmin)%60)));
 }
}
By using this example we can calculate the time
spent by the customer in cyber café and the
amount to be paid by customer to the cyber café
owner automatically without calling any method
and properties.
Significant Benefits of AOP Over Oop: By
using above example, the code of java with
using aspect gives the reusability of the code
automatically when using same strategy
repeatedly3. Hence aspect implementation in
object oriented programming language reuse the
code and these are the benefits of using aspects
in object oriented programming language-
� AOP aides overcome framework level

coding i.e. Logging, Transaction or Security
administration issue by unifying these cross-
cutting concerns.

� AOP addresses every angle independently in
a measured manner with negligible coupling
and duplication of code. This particular
approach additionally pushes code reuse by
utilizing a business rationale concern with a
different lumberjack viewpoint.

� Make less demanding to include more

current usefulness' by including new
viewpoints and weaving tenets and along
these lines recovering the last code. This
capacity to include fresher usefulness as
particular angles empower application
originators to defer or concede some
configuration choices without the
predicament of over planning the
application.

� A code snippet would look WITHOUT
AOP:

 Fig. 2

� And the same code snippet with AOP:

 Fig. 3

� Fast improvement of evolutionary models
utilizing OOP by centering just on the
business rationale by precluding cross-
cutting concerns, for example, security,
transaction, logging and so forth. Once the
model is acknowledged, extra concerns like
security, logging, inspecting and so on might
be weaved into the model code to move it
into a generation standard application.

� Engineers5 can focus on one perspective at
once instead of needing to consider business
rationale, security, logging, execution,

 Patel S., J. Harmoniz. Res. Appl. Sci. 2017, 5(4), 166-171

www.johronline.com 171 | P a g e

multithread wellbeing and so on. Distinctive
angles could be produced by diverse
engineers focused around their key qualities.

� The cooperation in the middle of
perspectives and non-angles in the path
depicted above could be acknowledged in
AspectJ by assigning all the Exceptions
tossed by the advices to the presentation
layer and choosing there what to do.

Conclusion: In a decisive manner the key
distinction in the middle of OOP and AOP is
that the center of OOP is to separate the
programming undertaking into items, which
embody information and techniques, while the
center of AOP is to separate the project into
crosscutting concerns. Actually, AOP is not a
contender for OOP, in light of the fact that it
rose out of OOP standard. AOP develops OOP
by tending to few of its issues. AOP acquaints
perfect routes with actualize crosscutting
concerns6 (which may have been scattered over
a few places in the comparing OOP execution)
in a solitary spot.
In AOP, AspectJ is flawless aspect-oriented6
conservatory to the Javatm programming
language Java platform5 well-suited easy to
learn and use. It enables clean modularization of
crosscutting concerns, such as error checking
and handling, synchronization, context-sensitive
behavior, performance optimizations,
monitoring and logging, debugging support, and
multi-object protocols
Consequently, AOP makes the system cleaner
and all the more approximately coupled. With
expanded IDE help for AOP applications and a
developing learning about AOP frameworks the

ideal model may well pull in more experts and
designers in not so distant future.
References:
1). Hon, T., & Kiczales, G. (2006, October).

“Fluid aop join point models”. In Companion
to the 21st ACM SIGPLAN symposium on
Object-oriented programming systems,
languages, and applications (pp. 712-713).
ACM.

2). Golbeck, R. M., Selby, P., & Kiczales, G.
(2010, June). “Late Binding of AspectJ
Advice”. In TOOLS (48) (pp. 173-191).

3). Gulia, P., Dev, A., & Patel, S. (2015, March).
“Comparative analysis of object oriented
programming and aspect oriented
programming approach”. In Computing for
Sustainable Global Development
(INDIACom), 2015 2nd International
Conference on (pp. 1836-1842). IEEE.

4). Hanenberg, S., Bachmendo, B., & Unland, R.
(2001). “An object model for general-purpose
aspect languages”. Generative and
Component-Based Software Engineering, 80-
91.

5). Baca, P., & Vranic, V. (2011, September).
“Replacing object-oriented design patterns
with intrinsic aspect-oriented design
patterns”. In Engineering of Computer Based
Systems (ECBS-EERC), 2011 2nd Eastern
European Regional Conference on the(pp.
19-26). IEEE.

6). Kiczales, G., Lamping, J., Mendhekar, A.,
Maeda, C., Lopes, C., Loingtier, J. M., &
Irwin, J. (1997). “Aspect-oriented
programming”. ECOOP'97—Object-oriented
programming, 220-242.

7).

