Journal Of Harmonized Research (JOHR)

Journal Of Harmonized Research in Applied Sciences 4(4), 2016, 156-159

ISSN 2321 - 7456

Original Research Article

EFFECT OF Ca(H₂PO₄)₂ ON AZOLLA

Syed Khalid Mustafa

Department of Chemistry, Faculty of Science, P.O. Box 741, University of Tabuk, 71491, Saudi Arabia

Abstract Ca $(H_2PO_4)_2$ is a chemical fertilizer, commercially known as superphosphate and commonly known as bone-ash and usually sold in open market for agriculture purposes. Whatever, whenever, wherever and whensoever phosphate fertilizer is given to the standing crop only 20% of phosphate is taken up and utilized by the crop and the rest 80% is remain suspended in the soil, unless until the microbial activity is not interacting with the suspended phosphate parties. Especially microbes, lower algae and *Azolla* have the capacity to utilize this suspended phosphate particles through their metabolic activity. Different species of *Azolla*, distilled water, Natural Pond water and superphosphate were taken to the laboratory and successive observations were noted from 1st June (2014) upto May 31st (2015) and again from 1st June (2015) up to May 31st (2016).

Keywords:-Azolla, superphosphate, Bio fertilizer, Pinnata, Prostrata, Erecta.

Introduction: *Azolla* is a photo, thermo and Chemo sensitive aquatic fern and highly selective by nature, its symbiotic relationship makes it unique. It is a good quality fish food and it may be used up as a fodder in poultry, animal husbandry and piggery also. It grows vigorously in polluted pond, ditches and in lentic water bodies, where P^{H} of water varies from 3 to 5 or ranging Between 3 to 5. During the course of investigation, it was noted that four different

For Correspondence: khalid.mustafa938@gmail.com. Received on: November 2016 Accepted after revision: November 2016 Downloaded from: www.johronline.com species of Azolla are available at Patna. Azolla Belongs Azollaceae, Salviniales to and leptosporangiate fern. Commonly Azollais known as duckweed, mosquito fern, feathered water fern, water volvate or velvate fern and ferry moss, Azolla needs lentic polluted water bodies where it grows vigorously as free floating bulk at aquatic weed. Plant body is delicate and differentiated into Rhizoids, stem and leaves. It measures 1 to 3 cm long and 1 to 2 cm wide in adult condition. According to clark (1980) and Armstrong (1985) Azolla reduces evaporation of water bodies. Azolla is a promising green manure which maintain C/N ratio of soil.

Material & Methods:- *Azolla* plants, pond water, Distil water, Borosil glass Beaker, glass tub, glass rod, globes for safety, superphosphate

Mustafa S.M., J. Harmoniz. Res. Appl. Sci. 2016, 4(4), 156-159

least one pocket for successive at experimentations for observations and electronic Balance are needed. Only Azollafiliculoids and Azollapinnata were taken into considerations but prostrate and eracta needs moisture soil, different water tubes for polluted pond water and similar number of tubs of distilled water were placed near window where Variegated

sunlight were available 2g/L 3g/L, 4g/L and 5g/L super phosphate were weighed twice one for pond water and other for distil water then weighed superphosphate were put into tubes and steered total mass very well then weighed Azolla mass similar weighed Azolla plant were put into different tubs for comparative study and careful observation. Observation

(1)	Colour of Plant	Filiculaids	Pinnata	Prostrata	Erecta									
		Brick Red	green	Soil Brown	P. green									
(2)	Odour of plant and adjoin	Fishy	Green	Soil like	-									
	water also													
(3)	Required P ^H -	3-4	3-5	3-5	4-5									
(4)	Required Temperature	5° c to 40° c	25° c to 30° c	5° c to 15° c	5° c to 10° c									
	Meteorological data													

Month	Temperature		Humidity	Rain fall		
	Minimum – Ma	aximum	Lower -	Higher		
January	$5^{0}c$	$12^{0}c$	70.	90.	10 mm.	
February	10^{0} c	$18^{\circ}c$	62.	75.	0 mm.	
March	20° c	$25^{\circ}c$	40.	50.	0 mm.	
April	$32^{\circ}c$	$40^{0}c$	38.	52.	0 mm.	
May	$33^{\circ}c$	$40^{0}c$	30.	50.	15 mm.	
June	$32^{\circ}c$	$41^{0}c$	40.	55.	58 mm.	
July	$30^{\circ}c$	$39^{\circ}c$	62.	79.	60 mm.	
August	$35^{\circ}c$	$40^{0}c$	80.	92.	500 mm.	
September	$29^{\circ}c$	$35^{\circ}c$	90.	100.	100 mm.	
October	$24^{0}c$	$35^{\circ}c$	85.	100.	300 mm.	
November	$12^{\circ}c$	$22^{\circ}c$	72.	100.	30 mm.	
December	10° c	$18^{\circ}c$	60.	98.	15 mm.	

Available of Azolla Species.

Months	Filiculoids	Pinnata	Prostrata	Erecta
January	+++	+	+++	+
February	+++	+	_	_
March	+++	+	_	_
April	++	_	_	_
May	+	_	_	-
June	_	_	_	_
July	_	_	_	-
August	+	_	_	_
September	+++	++	_	_
October	+++	+++	_	_
November	+++	+++	+	++
December	+++	+++	+++	+++

(+ present) (++ more) (+++ Abundant) (- absent)

More or less similar result were observed in (12-13 and 13-14).

Month		Po	ond Wa	ter		Filiculoids with distilWater				Pond water					Pinnata with distil water					
	1g/L	2g/L	3g/L	4g/L	5g/L	1g/L	2g/L	3g/L	4g/L	5g/L	1g/L	2g/L	3g/L	4g/L	5g/L	1g/L	2g/L	3g/L	4g/L	5g/L
June	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
July	5	9	10	10	21	3	3	5	5	11	4	5	11	20	24	2	3	3	3	7
Aug	9	15	21	30	45	4	3.5	7	12	17	10	11	27	42	51	3	3	3	6	11
Sep	14	28	33	63	72	5	6	10	17	25	27	33	39	69	75	3	4	5	9	17
Oct	22	36	51	81	86	5	10	10	26	29	39	42	49	82	90	3	4	7	13	25
Nov	35	51	66	96	124	7	10	17	29	37	40	47	57	96	117	4	5	9	17	25
Dec	35	65	80	135	155	7	10	17	35	41	47	53	81	121	150	6	6	9	19	26
Jan	42	77	96	163	176	7	14	22	37	43	51	57	99	141	179	6	6	9	21	27
Feb	45	90	115	172	205	7	17	27	37	47	56	68	121	161	211	7	7	11	21	29
Mar	48	92	135	185	235	8	17	27	39	49	56	81	140	170	235	8	9	13	21	29
Apr	48	97	146	194	244	9	17	30	40	50	59	85	149	178	249	8	10	13	21	30
May	50	99	149	201	250	10	19	30	41	50	60	90	151	180	253	8	11	14	22	30

In Laboratory condition form 1st June (2014) to 31 May 2015.

In Laboratory condition form 1st June (2015) to 31 May 2016.

Month		Po	ond Wat	ter		Filiculoids with distil Water						Po	ond wat	er		Pinnata with distil water					
	1g/L	2g/L	3g/L	4g/L	5g/L	1g/L	2g/L	3g/L	4g/L	5g/L	1g/L	2g/L	3g/L	4g/L	5g/L	1g/L	2g/L	3g/L	4g/L	5g/L	
June	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
July	4	8	10	9	20	5	3	5	8	15	4	5	15	20	25	2	3	3	5	8	
Aug	8	15	20	28	40	8	5	8	15	19	10	15	20	40	50	3	8	10	15	20	
Sep	15	30	35	60	75	10	8	12	20	25	25	30	35	60	75	3	8	12	20	20	
Oct	20	36	50	80	80	10	10	10	20	25	30	40	40	80	90	5	5	15	15	25	
Nov	35	50	60	90	120	12	10	15	26	30	35	42	50	90	100	7	10	15	18	25	
Dec	35	60	70	125	150	12	15	15	30	35	40	50	80	120	120	8	10	10	20	25	
Jan	42	70	85	143	175	15	15	20	35	40	50	50	90	140	125	8	10	10	20	30	
Feb	45	90	100	152	200	12	18	25	35	45	50	68	120	160	210	9	12	15	20	35	
Mar	40	90	125	165	225	20	18	25	40	45	55	80	125	175	230	10	12	15	20	35	
Apr	35	75	136	180	240	22	20	30	45	50	55	85	130	175	245	10	15	15	25	35	
May	30	35	145	200	250	25	25	35	45	50	60	90	135	180	250	10	15	15	25	35	

Discussions:-Similar observations were showing that the growth of Azolla depends upon the basis of pollution load into the water bodies Pandey and Thakur (2000) observed in polluted drainage system Thakur and Srivastava (1986) reported Fern in north Bihar. Again Pandey&thakur studied it from (2011 up to & up till now.) In Himachal, In Panjab University and also in Maharashtra it is studied since last decade. Pillai et al. (2014), Ahmad (1941) on A filiculoids, Lumpkin et al. (1980) worked on manure and economic importance, Janes, (1998) worked on Growth and survival of Azollafiliculoides. Moore, A. W. (1969) worked on Azolla: Biology and agronomic significance. Sjodin, Erik (2012 worked on The Azolla Cooking and cultivation Project. Wagner, G.M. (1997). Worked on Azolla: a review of its biology and utilization. Hussner, A. (2006 worked on Online Database of the North European and Baltic Network on Invasive Alien Species. Hackney, P. (Ed) 1992 worked on studied Filiculoids in Cool Conditions.

Conclusions: – The observations are showing that the filiculoids are more tolerant species, to pollution load and more sensitive through the *Azolla* to the standing crop will have no any side effect and the produced crop yield will be the result of organic farming it is already known that *Azolla* is maintaining C/N ration of soil and soil health, so the direct use of chemical fertilizer should be avoided and through *Azolla* Culture, it will be the more beneficial to all.

References: –

- 1. Clark (1980) A marriage between Fern and Algae Environment South West no. 500: 20-24.
- 2. Armstrong W.P (1985) A Fern-algae symbiosis Carolina Tips 48: 9-11.

- 3. Thakur and Srivastava (1986) Ph.D thesis, Bihar Univ.
- 4. Pandey and Thakur (2000) Ph.D thesis B.U. Muz.
- 5. Pandey and Thakur (2011) Neslether Vol-1 issue-1 April 2011 Page 27-28.
- 6. Pandey and Thakur (2015) studied paper submitted to Indian Fern Society.
- P. Kamalasanana Pillai, S. Premalatha and S. Rajamony. Azolla Farming Matters magazine. Retrieved 2008-01-14 "The East discovers Azolla". Azolla Foundation. Retrieved 18 August 2014.
- 8. Ahmad, G. (1941): Effect of light intensity and temperature on the growth of Azollafiliculoides. Journal of the Indian Botanical Society 20: 213-226
- 9. Lumpkin, T.A. and Plucknett, D.L. (1980): Azolla: Botany, Physiology, and Use as a Green Manure. Economic Botany 34 (2): 111-153
- 10. Janes, R. (1998b): Growth and survival of Azollafiliculoides in Britain. New Phytologist 138:
- 11. Moore, A. W. (1969). "Azolla: Biology and agronomic significance". Bot. Rev. 35:
- 12. Sjodin, Erik (2012). *The Azolla Cooking and cultivation Project.*
- 13. Wagner, G.M. (1997). "Azolla: a review of its biology and utilization". Bot. Rev. 63:
- 14. Hussner, A. (2006). Azollafiliculoides" (PDF). Online Database of the North European and Baltic Network on Invasive Alien Species. Retrieved February 19, 2010
- 15. Hackney, P. (Ed) 1992Third Edition. Institute of Irish Studies &The Queen's University of Belfast.