Journal Of Harmonized Research (JOHR)

Journal Of Harmonized Research in Applied Sciences 2(1), 2014, 05-14

ISSN 2321 - 7456

Original Research Article

CAMPUS ASTRONOMY: A CATALOGUE

Jesus Rodrigo F. Torres

Chairman, Department of Astronomy, Graduate School, Rizal Technological University; Mandaluyong City, Philippines

Keywords: Astronomy and Earth Science Education

I. Introduction

Eight years after introduction of the Rizal Astronomy programs of the Technological University (MS in Astronomy, Graduate Diploma in Astronomy, and BS Astronomy in Technology), I have felt a real need for an observing catalogue which students can use, especially if they are observing in the school campus. An observing catalogue that would contain the most interesting objects in the night sky and which would be within the capability of binoculars or small telescopes now available in dealers' shops in malls has been imperative in the last few years. These binoculars and telescopes are now within the reach of the budgets of students, as they are even cheaper than cell phones.

The observing catalogue should useful under the stars; it should contain

For Correspondence:

jrftorres2002ATyahoo.com Received on: January 2014 Accepted after revision: February 2014 Downloaded from: www.johronline.com usable maps that give enough detail to be useful in locating objects. The majority of the objects in the guide should be observable even in severely light-polluted campuses. It should contain enough useful information to satisfy the intellectual needs of the astronomer; such information should create a hunger for more information which the astronomer will search for himself or herself later.

The observing catalogue should contain objects a fairly new astronomer with a working knowledge of the most important constellations which he or she can identify easily. The constellations themselves should be the more prominent ones. Almost all of them should have easily identifiable patterns.

The observing catalogue should have pictures of most of the included objects, with a fair representation of the objects which can be studied, such as galaxies, open clusters, globular clusters, nebulae, single, double and multiple stars, and even supernova remnants. The pictures shall be those which would give a better understanding of the object, or which should more or less be similar to what the astronomer would see in the eyepiece.

With these things in mind, this observing catalogue for campus astronomy is hereby presented.

II. Research Objectives:

This research shall have the following objectives:

- 1. To produce an observing catalogue which will be useful in campus astronomy especially in educating students in astronomy in the field setting? The observing site shall be in a campus. As benchmark, all the objects in the catalogue should be observable in the RTU Pasig Campus.
- 2. The catalogue should be useful to both new and advanced campus astronomers, and should have enough information for field lectures or while observing activities are in progress.
- 3. The catalogue should contain just enough of the most interesting astronomical objects which can be easily or moderately observed through small-aperture telescopes or even binoculars of good quality.
- 4. The catalogue should be useful in the manual search for the objects described.

III. Research Problems:

This research shall have as its major problem the production of an observing catalogue for campus astronomy. Specifically, it shall have the following subproblems:

- 1. What astronomical objects should be included which would serve the objectives of the research?
- 2. What information should be included in describing the objects?
- 3. What methods shall be used to describe the objects and to validate their inclusion in the catalogue?

4. What type of telescopes or binoculars shall be recommended based on the researcher's own field observations of the objects in the catalogue?

IV. Research Methods:

The research shall rely on the following methods to answer the three problems above-specified:

- 1. Expert consultation. I have consulted with the advanced astronomers in the country for suggestions on the objects to be included. These astronomers are characterized by their experience in holding observational activities with students of various client schools; they are those who have many years of observing experience; some also engage in astrophotography or sketching; they have years of experience as lecturers in the astronomical clubs in the country; some have work directly related to astronomy, such as lecturers in schools or astronomy entrepreneurs.
- 2. Field Observation. I have observed and re-observed the objects included in the catalogue. The type of telescopes which would be effective in observing the different types of objects have been determined through these observations.
- 3. Data gathering. Known data on the objects are taken from Internet sources and from books. The astronomer who happens to be using this book should try to confirm the data by himself or herself, as research in this field is very dynamic and continuing.

V. Observing Sites:

The objects included in the catalogue should be observable in the campuses of the Rizal Technological University. Objects which can be seen and observed in the Mandaluyong Campus while the Quadrangle floodlights are open while the athletes and cheer dance groups are practicing are indeed good and bright objects for observation, as there can be no more worse observing site than this campus in this situation.

The Pasig Campus is light-polluted as it is in the middle of greater Manila. It is adjacent to the Pasig City General Hospital which opens its bright halogen floodlights which trespass to RTU property.

Students and faculty in schools, colleges and universities which have campuses in dark locations will surely be able to observe all the objects in this catalogue even with smaller telescopes. I purportedly observed all objects in the Mandaluyong and Pasig campuses as these are possibly some of the worst places to do astronomical observing. If these objects can be observed in these campuses, surely they can be observed in dark campuses.

VI. Telescopes and Other Equipment:

For this research, the following equipments have been used, without going

into the technical details about them; an astronomer will sooner or later learn about those details. I will discuss here the value of the telescopes relative to the observation of the objects in this catalogue.

I have used the following telescopes Schmidt-Cassegrain Celestron 8-inch telescope or C-8, Celestron 4-inch achromatic refractor or C-102, Orion XT-10 Reflector, Binoculars Newtonian and Astroscan described in my paper entitled "Messier objects as a tool in teaching astronomy".

VII. Objects in the Catalogue:

After the consultations with the experts have been done, the list of objects to be included in the catalogue have been finalized, with suggestions to include additional objects or delete some which may, in practice, be decided as necessary adjustments.

Object	Туре	Magnitude	Minimum Equipment					
Andromeda								
M31	galaxy	3.50	60-mm Telescope					
Gamma Andromedae	multiple star	2.15	60-mm Telescope					
(Almaak)								
	Ara	l						
Caldwell 86 (NGC 6397)	globular cluster	5.70	60-mm telescope					
Caldwell 82 (NGC 6193)	Open cluster +	Open cluster + 5.20 6						
	bright nebula							
	Arie	S	-					
Gamma Arietis	double star	4.50	60-mm Telescope					
	Aurig	ga	-					
Alpha Aurigae (Capella)	multiple star	0.1	Naked eye, Binoculars					
Three Kids	asterism		Naked eye					
Epsilon Aurigae	giant variable star	4.7	Naked eye, binoculars					
M36	open cluster	6.00	binoculars					
M37	open cluster	5.60	binoculars					
M38	open cluster	6.40	binoculars					
Aquarius								

 Table 1. List and Types of Objects in the Catalogue

M2	globular cluster	4.00	60-mm Telescope
Zeta Aquarii	double star	3.7	60-mm Telescope
Lotu i iquan	Aquil		
Alpha Aquilae (Altair)	single star	0.8	Naked eye
Thphu Tiquinue (Thuir)	Boote		Tunes eye
Alpha Bootis (Arcturus)	giant single star	-0.1	Naked eye
	Cance		
M44 (beehive)	open cluster	3.10	Binoculars
M67	open cluster	6.90	60-mm telescope
	Canis M	ajor	
h 3945	double star	0	60-mm telescope
M41	open cluster	4.50	60-mm Telescope
	Canes Ve	natici	
Cor Caroli	double star	2.9	60-mm Telescope
M3	globular cluster	6.40	60-mm telescope
	Caprico	rnus	
Alpha Capricorni 1/2	double star	4.40/3.55	60-mm Telescope
	Carin	a	-
Canopus	giant single star	-0.6	Naked eye
Caldwell 92 (NGC 3372)	giant star + nebula	1.0	60-mm telescope
Caldwell 91 (NGC 3532)	open cluster	3.0	60-mm telescope
	Cassiop	oeia	
Caldwell 13 (NGC457)	open cluster	6.4	60-mm telescope
M52	open cluster	6.90	60-mm telescope
Eta Cassiopeiae	double star	3.45	60-mm telescope
M103	open cluster	7.40	60-mm telescope
	Centaurus		
Alpha Centauri	double star	4.40	60-mm Telescope
Beta Centauri (Hadar)	multiple star	0.55	60-mm telescope
Omega Centauri	globular cluster	4.65	Binoculars
	Cephe	us	
Mu Cephei (The Garnet	super red giant star	4.20	Naked eye, 60-mm
Star)			telescope
	Coma Ber		
Melotte 111	open cluster	10.5	Naked eye
	Corona Bo	orealis	
R Coronae Borealis	variable star		binoculars
	Crux	<u> </u>	·
Alpha Crucis	double star	0.8	60-mm telescope
Caldwell 94 (NGC 4755)	open cluster	4.20	Binoculars, 60-mm
			telescope
	Cygnı	us	
Alpha Cygni (Deneb)	giant single star	1.2	Naked eye, Binoculars
Beta Cygni (Albireo)	double star	3.0	60-mm telescope

www.johronline.com

M29	open cluster	6.60	Binoculars, 60-mm telescope	
	Delphin	us		
Job's Coffin	asterism		Naked eye	
Gamma Delphini	double star	5.1/4.3	60-mm Telescope	
· · · · ,	Hercul			
M13	globular cluster	5.90	Binoculars, 60-mm	
			Telescope	
M92	globular cluster	6.50	60-mm telescope	
	Hydra	1		
M48	open cluster	5.80	60-mm telescope	
M68	globular cluster	8.20	60-mm telescope	
Alpha Hydrae (Alfard)	single star	2	Naked eye,	
	Gemin	ıi		
Alpha Geminorum	multiple star	1.6	60-mm telescope	
(Castor)				
M35	open cluster	5.10	Binoculars, 60-mm	
			telescope	
	Leo			
The Sickle	asterism		Naked eye	
Alpha Leonis (Regulus)	single star	1.4	Naked eye	
Gamma Leonis (Algieba)	double star	2.0	60-mm telescope	
M65	galaxy	9.30	100-mm telescope	
M66	galaxy	9.00	100-mm telescope	
	Lepus			
M79	globular cluster	8.00	Binoculars, 60 mm telescope	
	Libra	L		
Alpha Librae	multiple star	5.2	binoculars	
(Zubenelgenubi)				
Beta Librae	single star	2.6	Naked eye, binoculars	
(Zubeneschamali)				
	Lyra			
Alpha Lyrae (Vega)	single star	0.0	Naked eye	
Epsilon Lyrae 1/2	two double stars	4.7/4.6	60-mm telescope, 100- mm telescope	
M57	planetary nebula	9.00	100-mm telescope	
	Monoce	ros	*	
Beta Monocerotis	multiple star	3.8	60-mm Telescope	
NGC 2244	open cluster +	4.80	60-mm Telescope	
	nebula		-	
M50	open cluster	5.90	60-mm Telescope	
	Ophiuch	nus		
M12	globular cluster	6.60	100-mm telescope	
M10	globular cluster	6.60	100-mm telescope	

Torres, J. R. F., J. Harmoniz. Res. Appl. Sci. 2014, 2(1), 05-14

IC 4665	open cluster	4.20	Binoculars, 60-mm telescope	
	Orio	n		
M42	emission nebula	4.00	binoculars	
Betelgeuse	super red giant star	0.4	Naked eye	
Rigel	Single star	0.2	60-mm telescope	
Collinder 7	open cluster		60-mm telescope	
Sigma Orionis	multiple star	4.00	100-mm telescope	
NGC 1981	open cluster	binoculars		
	Pegas	us		
51 Pegasi	single star	5.45	Naked eye	
M15	globular cluster	6.40	60-mm telescope	
The Great Square of	asterism		Naked eye	
Pegasus				
	Perse	us		
Alpha Persei (Mirphak)	single star	1.8	Naked eye,	
M34	open cluster	5.20	60-mm telescope	
NGC 869	open cluster	4.00	binoculars	
NGC 884	open cluster	4.00	binoculars	
	Pisce	S		
TX Piscium	single star	4.95	60-mm telescope	
	Pupp	is		
M46	open cluster	6.10	60-mm telescope	
M47	open cluster	4.40	60-mm telescope	
NGC 2451	open cluster	2.80	binoculars	
	Sagittai	rius		
M24	star cloud	11.00	binoculars	
M8 (Lagoon Nebula)	nebula	6.00	60-mm telescope	
M22	globular cluster	5.10	60-mm telescope	
	Serpen	IS		
M5	globular cluster	5.80	60-mm telescope	
	Scorpi	us		
Alpha Scorpii (Antares)	super red giant	1.1	100-mm telescope	
	star/double star			
M4	globular cluster	5.90	60-mm telescope	
M6	open cluster	4.20	60-mm telescope	
M7	open cluster	3.30	binoculars	
NGC 6231	open cluster	2.60	60-mm telescope	
	Scutu	m		
M11	open cluster	5.80	60-mm telescope	
Taurus				
M45 (Pleiades)	open cluster	1.6	Binoculars, Naked eye	
The Hyades	asterism		Naked eye	
Aldebaran	single star	0.9	Binoculars, Naked eye	
M1	supernova remnant	8.40	100-mm telescope	

Torres L	R	F. I.	Harmoniz.	Res	Annl	Sci	2014	2(1).0	5-14
101103, 3.	1.	т., J.	marmoniz.	ncs.	Thh:	JUI.	2014,	Z(1), U	J 14

www.johronline.com

	Unco M	[0:0m							
The Big Dipper	Ursa M asterism		Naked eye						
Alcor and Mizar	two double stars	2.2/ 4.2							
			60-mm telescope						
M81	galaxy	6.90	binoculars						
M82	galaxy	8.40	binoculars						
	Ursa M		1						
Alpha Ursae Minoris	double star	2	60-mm telescope						
(Polaris)									
	Vela								
Gamma Velorum	multiple star	1.75	60-mm -Telescope						
(Regor)									
Caldwell 85 (IC 2391)	open cluster	2.5	60-mm Telescope						
Virgo									
M104	galaxy	8.30	60-mm telescope						
Alpha Virginis (Spica)	double star	1.0	Binoculars, Naked eye						

Torres, J. R. F., J. Harmoniz. Res. Appl. Sci. 2014, 2(1), 05-14

Table 2. Number of Objects Per Type

Туре	N
1. Globular clusters	14
2. Open clusters	31
3. Open clusters + bright nebula	2
4. Single stars	9
5. Giant single star	1
6. Giant single star + nebula	1
7. Emission nebulae	2
8. Double stars	14
9. Double-double stars	1
10. Giant variable star	1
11. Variable star	1
12. Super red giant stars	3
13. Multiple stars	8
14. Galaxies	6
15. Planetary nebula	1
16. Asterisms	5
17. Star cloud	1
18. Supernova remnant	1
TOTAL	102

Definition of Terms

Globular clusters- A tight, spherical grouping of hundreds of thousands of stars. Globular clusters are composed of older stars, and are usually found around the central regions of a galaxy. ^[1]

Open clusters - A collection of young stars that formed together. They may or

may not be still bound by gravity. Some of the youngest open clusters are still embedded in the gas and dust from which they formed.^[2]

Single stars- A self-luminous object that shines through the release of energy

produced by nuclear reactions at its core.

Emission nebulae- An emission nebula is a nebula that glows; it emits light energy. The reddish light is produced when electrons and protons combine, forming hydrogen atoms. Emission nebulae are formed when energetic ultraviolet light from a very hot star excites a cloud of hydrogen gas; the UV radiation ionizes the hydrogen (it strips electrons from the hydrogen atoms). The free electrons combine with protons, forming hydrogen and red light. The Horse head Nebula is in front of an emission nebula which illuminates the outline of the "horse head."

Double stars- A grouping of two stars. This grouping can be apparent, where the stars seem close together, or physical, such as a binary system.^[5]

Variable star- A star that fluctuates in brightness. These include eclipsing binaries. ^[6]

Super red giant stars- The stage in a star's evolution where the core contracts and the star swells to about five hundreds times its original size. The star's temperature drops, giving it a red color.^[7]

Multiple stars- A **multiple star system**, where in some have tri-nary, quarternary, quintuple, sextuple, septuple stars, depending of the number of stars the system contains. Binary star systems are the most common, and follow elliptical orbits, under the influence of each other's gravity.^[8]

Galaxies- A large grouping of stars. Galaxies are found in a variety of sizes and shapes. Our own Milky Way galaxy is spiral in shape and contains several billion stars. Some galaxies are so distant that their light takes millions of years to reach the Earth. ^[9]

Planetary nebula - A planetary nebula is a nebula formed from by a shell of gas

which was ejected from a certain kind of extremely hot star. As the giant star explodes, the core of the star is exposed. Planetary nebulae have nothing to do with planets. The Hourglass Nebula is a planetary nebula.^[10]

Asterisms- A collection of stars (within a constellation) that forms an apparent pattern from Earth. Some familiar asterisms include the Big Dipper, the Little Dipper, Pleiades, Trapezium, and the Summer Triangle.^[11]

Star cloud- A dense grouping of unrelated stars which looks nebulous, such as the Sagittarius Star Cloud.

Supernova remnant- An expanding shell of gas ejected at high speeds by a supernova explosion. Supernova remnants are often visible as diffuse gaseous nebulae usually with a shell-like structure. Many resemble "bubbles" in space. ^[12]

VIII. Conclusions and Recommendations:

The following conclusions are derived from the study.

- 1. It is possible to prepare an observing guide for Campus Astronomy through consultations with advanced Filipino astronomers.
- 2. The preparation of catalogues such as this one can only be done if the researcher actually observes all the objects he or she will include in the said catalogue, with various available telescopes.
- 3. The objects listed in this Campus Astronomy observing catalogue are those which can be seen or observed by means of the naked eyes, binoculars and telescopes as small as refractor telescopes of 60-mm objective lenses. The biggest telescopes for Campus Astronomy should be limited to 200mm apertures.

IX. The following recommendations are hereby proposed:

- 4. Observing guides in Campus Astronomy for more advanced observers should be prepared which would include more advanced objects such as dimmer galaxies, open clusters, globular cluster, planetary nebulae, and emission nebulae. The objects would require the use of more advanced telescopes such as 4-inch refractors or bigger, and 6-inch reflectors or bigger.
- 5. More specialized observing guides such as Planetary Nebulae for Campus Astronomy, Globular Clusters for Campus Astronomy, Galaxies for Campus Astronomy, Open Clusters for Campus Astronomy, Double and Multiple Stars for Campus Astronomy, and others like these can be developed by advanced astronomers.
- 6. Actual observing in relatively dark campuses in the State Universities and Colleges outside Metro Manila can be done to determine the potential of such campuses for doing dark-sky astronomy.

X. Bibliography

[1] [2] [5] [6] [7] [9] Knight JD, (2013) Sea and Sky.

http://www.seasky.org/astronomy/astrono my-glossary.html

http://www.seasky.org/astronomy/astrono my-glossary.html

[3] Kalasinskas R. (1996) Astronomy Dictionary

http://frontiernet.net/~kidpower/dictionary .html

http://frontiernet.net/~kidpower/dictionary .html

[4] [10] [11] Col, Jeananda. (1996) Enchanted Learning.

http://www.EnchantedLearning.com http://www.EnchantedLearning.com

[8] (2013) Planet Facts

http://planetfacts.org/multiple-starsystems/ http://planetfacts.org/multiple-starsystems/

Other References

Numerous websites are useful in the study of the observational astronomy relevant to Campus Astronomy, but in addition, I recommend the following books:

- Burnham, Robert, Jr. Burnham's Celestial Handbook. Volume 1-3, 2nd ed. 3 vols. Mineola, N.Y.: Dover Publications, 1978.
- Ferris, Timothy. Galaxies. New York: Stewart, Tabori, and Chang, 1982.
- Fix, John D. Astronomy, Journey to the Cosmic Frontier, 2nd ed. Boston: McGraw Hill, 1999.
- Franknoi, Andrew, Thompson, Davis and Wolff, Sidney. Voyages to the Planets Belmont, Thomso Learning Inc., 2004.
- Friedman, Herbert The Amazing Universe Washington DC. National Geographic Society, 1975
- Gibilisco , Stan. Astronomy Demystified New York: McGraw Hill, 2003.
- Gribbin, John. Companion to the Cosmos. London: Phoenix Giant, 1997.
- Greely, Ronald And Boston, Raymond The Compact NASA Atlas of the Solar System Cambridge, University Press, 2001.
- Harrington, Phillip S. The Deep Sky, An Introduction. Cambridge, Mass.: Sky Publishing Corp.; Cambridge: Cambridge University Press, 1997.
- Houston, Walter Scott. Deep Sky Wonders. Cambridge, Mass.: Sky Publishing Corp.; Cambridge University Press, 1999.
- Levy, David H. The Scientific American Book of Cosmos New York, Byron Press Visual Publications Inc. and Scientific American, Inc., 2000.

- Luginbuhl, Christian B., and Skiff, Brian A. Observing Handbook and Catalogue of Deep-Sky Objects. Cambridge, Mass.: Cambridge University Press, 1989.
- Maran, Stephen P. Astronomy for Dummies. New York, N.Y.: IAG Books Worldwide, Inc., 1999.
- Mc Millan, Chaisson. Astronomy Today 4th ed. Upper Saddle River, New Jersey, Prentice Hall Inc., 2002
- Moore, Patrick Amateur Astronomy. New York, New York: W.W Norton and Company, Inc., 1968.
- Murdin, Paul, David, Allen, and Malin, David. Catalogue of the Universe. New York: Crown Publishers, 1979.
- Murdin, Paul and Penston, Margaret. Encyclopedia of Astronomy New York, Fire Fly, Books 2005.
- O' Meara, Stephen James. The Messier Objects. Cambridge, Mass.: Sky Publishing Corp.; Cambridge University Press, 1998.
- Ridpath, Ian, ed. A Dictionary of Astronomy. Oxford: Oxford University Press, 1997.
- Ridpath, Ian. Eyewitnesses Handbooks' Stars and Planets. London: Dorling Kindersely, 1998.
- Rowan-Robinson, Michael. Our Universe: An Armchair Guide. New York: W.H Freeman and Company, 1990.
- Sky and Telescope Magazine. Cambridge, Mass.: Sky Publishing Corp. (monthly).

- Strong, Robert A., and Sinnot, Roger W. Sky Atlas 2000.0 Companion, 2nd ed. Cambridge Mass.: Sky Publishing Corp.; Cambridge University Press, 2000.
- Tirion, Will. Sky Atlas 2000.0 Cambridge Mass.: Sky Publishing Corp.;
- Cambridge: Cambridge University Press, 1988.
- Torres, Jesus Rodrigo F. Urban Astronomy in the Philippines, Volumes 1 to 5. Mandaluyong City: RTU, 2000-2002.
- Torres, Jesus Rodrigo F. Urban Astronomy in the Philippines, Volume 6 The Messier Objects, Academic Journal. Mandaluyong City: RTU, 2003.
- Torres, Jesus Rodrigo F. Urban Astronomy in the Philippines, Volume 7 The Messier Objects, Academic Journal. Mandaluyong City: RTU, 2003.
- Torres, Jesus Rodrigo F. Urban Astronomy in the Philippines, Volume 8 The Messier Objects, Academic Journal. Mandaluyong City: RTU, 2003.
- Torres, Jesus Rodrigo F. Urban Astronomy in the Philippines, Volume 9 The Messier Objects, Academic Journal. Mandaluyong City: RTU, 2003.