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Abbreviations: 

2-AG: 2-arachidonylglycerol (endogenous ligand of CBR); 

Aβ: β-amyloid peptides; AEA: N-arachidonylethanolamide, 

anandamide (endogenous ligand of CBR); AD: Alzheimer's 

disease; CBRs: Cannabinoid Receptors; CB1Rs: type 1 

cannabinoid receptors; CB2Rs: type 2 cannabinoid receptors; 

CBD: Cannabidiol (CBR partial agonist); eCBs: 

endocannabinoids; ECS: Endocannabinoid System; DAGL-α, 

DAGL-β: diacylglycerol lipases, enzymes for the synthesis of 

2-AG; FAAH: fatty acid amide hydrolase, AEA degradation 

enzyme; fMRI: functional Magnetic Resonance Imaging; 

LTD: Long-term synaptic Depression; LTP: Long-term 

Synaptic Potentiation; MAGL: Monoacylglycerol Lipase, 2-

AG degradation enzyme; mTOR: Mammalian Target of 

Rapamycin; PEA: Palmitoylethanolamide (endogenous 

analogue of AEA); PET:  Positron Emission Tomography; 

THC: Δ9-tetrahydrocannabinol (partial agonist at both CB1 

and CB2 receptors); WIN-2: synthetic agonist of CB1/CB2 

receptors WIN 55,212-2 

Introduction 

The endocannabinoid system (ECS) plays an important 

role in cognition, mainly by being involved in synaptic  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

responsiveness and plasticity [1]. Significant concentrations 

of cannabinoid type 1 receptors (CB1Rs) in the human brain 

have been found in the hippocampus and neocortex (in 

particular, in somatosensory, prefrontal, entorhinal, and 

perirhinal areas); they are also abundant in some subcortical 

structures (dorsal striatum, amygdala, cerebellum, and 

substantia nigra) [2,3]. A similar distribution of CB1Rs has 

been described in animals [4]. In the hippocampus, where 

CB1Rs are mainly expressed at the terminals of GABAergic 

neurons [5], endocannabinoids (eCBs) exert a disinhibitory 

effect, by reducing GABA release in a short- [6] or long-term 

mode [7] and thus promote associative learning [8]. By 

reducing the inhibition, eCBs facilitate the occurrence of long-

term potentiation (LTP) in the hippocampus [7,9]; the 

increase in LTP induction may contribute to the formation of 

temporal associative memories [10]. 

Scientific interest in cannabinoids arose in the 1960s, 

when the main psychoactive component of hemp (Cannabis 

sativa), Δ9-tetrahydrocannabinol (THC), was chemically 

characterized [11]. Somewhat earlier, another component of 

cannabis, cannabidiol (CBD), was identified [12], which does 

not have a pronounced psychoactive effect. In the early 1990s, 

two types of cannabinoid receptors were cloned, CB1 and 

CB2 [13,14]). Subsequently, ligands of these receptors, 

endogenous cannabinoids (eCBs), derivatives of arachidonic 
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acid, N-arachidonylethanolamide (AEA or anandamide) and 

2-arachidonylglycerol (2-AG), as well as enzyme systems for 

their synthesis, transport and degradation were identified [15-

17].  

Cannabinoid receptors (CBRs), eCBs, and enzymes 

that regulate their synthesis and degradation, form the 

endocannabinoid system (ECS) [18-20]. 

eCBs are involved in the regulation of homeostasis of 

cell, tissue, organs and whole organism, brain development, 

neurotransmission and synaptic plasticity [6], in particular, 

LTP and LTD [21]. Besides, CB1Rs are intimately involved 

in regulating excitatory glutamatergic inputs and energy 

balance at the brain level [22]. 

eCBs are synthesized and released from postsynaptic 

cells “on demand”, in response to various signals [23] and, 

acting on CBRs located at the terminals of axons of the same 

or nearby cells [18], reduce the release of various mediators 

[5,6,24]. eCBs should be distinguished from exogenous 

cannabinoids, which include the phytocannabinoids (THC and 

CBD) and synthetic cannabinoids or CBR agonists.  

In recent years, the ECS has been considered more 

broadly as endocannabinoidome, which includes some 

mediators biochemically associated with eCBs, their receptors 

and metabolic systems. Thus, the FAAH enzyme (hydrolyzing 

AEA) also activates other endogenous substrates that act on 

other receptors. Another enzyme, MAGL (hydrolyzing 2AG) 

has substrates including monoacylglycerols other than 2-AG 

[25], which also act on receptors other than CB1 and CB2 

receptors [26,27]. Detailed information on the mediators, 

enzymes, and signaling pathways involved in the 

endocannabinoidom has been presented previously [25-33]. 

The literature on the effects of cannabinoid drugs on 

the cognitive functions is highly controversial. In my previous 

publication, the composition and properties of the ECS were 

discussed in detail; the effect of exogenous cannabinoids on 

cognitive functions has also been described, mainly in humans 

[34]. In the present review, which includes research from 

recent years, I have focused on the role of the ECS in animal 

cognition. Based on the presented data, possible approaches to 

the treatment of cognitive disorders in Alzheimer's disease 

(AD) are discussed.  

Effect of cannabinoid drugs on cognitive 

functions of the healthy brain  

Cannabis (or hemp, or marijuana) contains about 70 

cannabinoids; in addition, it includes terpenoids, flavonoids 

and alkaloids [35]. Of all the cannabinoids found in cannabis, 

THC is the most extensively studied; it has strong affinity for 

CB1 and CB2 receptors [36,37] and, as a result, can directly 

affect the brain [38-40]. The effects of cannabidiol (CBD) on 

cognitive function have also been intensively studied now.  

Animal experiments provide good opportunities for 

brain research. However, the data are often ambiguous. 

Alterations in cognitive functions upon direct action on 

CB receptors and after the deletion of CB receptors 

The findings of the last two decades show that the ECS 

modulates certain aspects of learning and memory. Thus, the 

results of the study by Lichtman in which rats were trained to 

perform a task in a radial eight-ray maze showed a better task 

performance after the administration of SR141716 

(rimonabant, a selective CB1R antagonist) than in the control 

[41]. Consistent with these data, an improvement in memory 

performance for object recognition in CB1R knockout mice 

compared with wild-type mice was found [42]. The beneficial 

effect of rimonabant on memory was confirmed in the work 

by Wolff and Leander [43]. Rimonabant also reversed THC- 

or anandamide-induced memory deficits [44] and attenuated 

sleep deprivation-induced memory impairment in rats [45]. 

Recently, Ghazvini and colleagues also revealed a positive 

effect of rimonabant: this CB1R antagonist improved the 

methamphetamine-induced impairment of object recognition 

and social behavior [46]. Another selective CB1R antagonist, 

AM251, may attenuate short- and/or long-term memory 

deficits in the inhibitory avoidance test [47]. On the other 

hand, WIN 55,212–2 (WIN-2), a potent CB receptor agonist, 

impaired recognition memory in rodents [48,49] or showed no 

effects on methamphetamine-induced impairment of object 

recognition and sociability [46]. 

However, the effects of improving memory during 

CB1R blockade were not observed when animals performed 

the tasks where the participation of working memory was 

necessary [50-52]. Thus, the CB1R antagonist SR141716A in 

a dose effective for blocking the action of THC and R-

methanandamide, by itself, did not affect the performance of 

the task in the working memory test [50]. When training rats 

in the test for spatial memory in the Morris water maze, the 

effects of improving memory with CB1R blocking were also 

not observed [40].  

In contrast, systemic administration of THC, WIN-2, 

and CP55,940 (CBR agonists) impaired working memory in 

rats; interestingly, unlike the listed drugs, anandamide (CB1R 

agonist) and CBD had no visible effect on working memory 

[53]. It has been suggested that the effects of the 

aforementioned CBR agonists on working memory are 

mediated through CBRs in the hippocampus [54,55]. In 

another early work, the effect of the synthetic CB1/CB2 

receptor agonist HU-210 on learning and memory 

consolidation was studied; two variants of the Morris maze, 

were used. The administration of HU-210 60 min before 

training at doses of 50 and 100 μg/kg/daily for four days 

disrupted learning only in a more complex task (with a hidden 

platform). In contrast, at a dose of 25 μg/kg, HU-210 

facilitated training in any platform position. Thus, different 

doses of this CBR agonist oppositely affected the learning in a 

complex task in the Morris maze. Importantly, as noted by the 

authors, the CBR agonist HU-210 at doses of 50 and 100 

μg/kg caused tigmotaxis, which is observed on increased 

arousal; therefore, the effect of HU-210 in this case may be 

mediated not by direct action on CB receptors but by other 

mechanisms [56].  

Learning the task in the Morris water maze is 

dependent on the hippocampus; this task is used to investigate 

spatial navigation and memory. It is interesting that a single 

injection of an extremely low dose of THC (0.001 mg/kg) 

significantly affected the performance of the task by mice in 

the complex Morris water maze test 3 weeks later. THC-

injected mice showed both longer escape latencies and lower 
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scores in the execution of this test compared to their matched 

controls, indicating the induction of cognitive deficits [57]. 

The long-term administration of the CBR agonist 

WIN-2 led to a deterioration in the performance of the task of 

recognizing a new object (NORT) in mice [58]. Besides, in a 

study using functional imaging (PET), long-term introduction 

of WIN-2 affected brain metabolism and functional 

connection between the hippocampus, perirhinal cortex, and 

thalamus i.e., between the structures involved in memory 

processes. The injection of AM 251, an antagonist of CB1Rs, 

removed the disturbances in the NORT task in mice [59].  

Interestingly, the effects of cannabinoids on cognition 

in animals changed with age, with stronger negative effects 

observed in the pubertal phase compared to adults (60-66]. 

Besides, in tests for object recognition and spatial memory, 

the authors obtained opposite results regarding the effects of 

CBR agonists on cognitive performance depending on the age 

of the animals and the dose of the administered drugs 

[61,62,65,66].  

The cognitive function can also be enhanced by 

activating CB2 receptors; for example, this activation restored 

the impaired behavior of rats in hippocampus-dependent tests 

[67]. The authors examined rats using the novel object 

recognition and the Morris water maze tests and found the 

return to normal behavior in both cases by injection of the 

CB2R agonist AM1241.  

Interestingly, aging animals showed improved 

cognitive performance under the influence of THC. Thus, 

Bilkei-Gorzo and colleagues [68] demonstrated that a low 

dose of THC reversed the age-related cognitive decline in 

mice aged 12 and 18 months when performing a 

hippocampus-dependent spatial memory task in the Morris 

water maze. This effect was accompanied by an increase in 

the expression of synaptic marker proteins and in the density 

of spines in the hippocampus. The restoration of 

transcriptional gene patterns in this structure was also 

observed. Besides, the expression profiles of these genes in 

12-month-old mice treated with THC were very similar to 

those without THC in mice at the age of 2 months. The 

transcriptional effects of THC were critically dependent on 

CB1Rs on glutamatergic neurons, since their inhibition 

blocked the positive effects of THC. The authors suggested 

the optimistic conclusion that the restoration of CB1 signaling 

in the elderly may be an effective strategy for treating age-

related cognitive impairment.  

It is noteworthy that although some early works have 

provided evidence of selective deficits in the hippocampus-

dependent memory under the influence of cannabinoid drugs 

[55,60,69,70], in a recent study, it was found that a low dose 

of the CBR agonist WIN-2 (1 mg/kg) and URB597 (a potent 

selective inhibitor of FAAH, 0.2 mg/kg) improved avoidance 

memory consolidation [71].  

In addition to the hippocampus, the medial prefrontal 

cortex (mPFC) was found to be a critical site for CB1R-

dependent modulation of acquired fear responses [72-74]. 

However, in the experiments of these authors on rats, not a 

context, but a certain signal (smell or sound) was used as a 

conditioned stimulus, and the reaction was considered as 

hippocampus-independent. Exposure to odor, previously 

associated with an electrocutaneous irritation, increased the 

burst activity in a subpopulation of neurons in the mPFC [72]. 

When a CB1R antagonist was injected into mPFC, the 

acquisition of a conditioned freezing reaction was blocked, 

which was associated with impaired neuronal bursting activity 

in this area of the neocortex and a decrease in LTP in the 

synapses of afferent fibers from the basolateral amygdala to 

PFC [72,73,75]. These data indicate that CB1R signaling at 

amygdala-mPFC synapses is involved in the coding of the 

fear response to olfactory conditioning.  

The results of a recent work by Pires and colleagues 

[76] confirm the facts obtained in early experiments. Using 

the Morris maze and chronic (up to 22-29 days) 

administration of WIN-2 (2 mg/kg, i.p.) in different groups of 

mice, they studied its effect on different phases of memory, 

learning (with the injection of the drug before the test for 

working memory) and consolidation (after this test), with 

parallel assessment of gene expression in the hippocampus 

and the prefrontal cortex. Insignificant cognitive impairments 

were found only in short-term working memory, which 

interfered with learning; however, long-term memory 

(consolidation) was not disturbed. Besides, an increase in the 

expression of DAGL-α, an enzyme for the synthesis of 2-AG, 

and a decrease in the level of MAGL, its degradation enzyme, 

were found in PFC in animals that received WIN-2 before 

training; at the same time, mice injected after training to 

assess memory consolidation, showed opposite changes. For 

genes associated with AEA metabolism, no correlation was 

found between molecular and behavioral data [76].  

In a number of studies on the effect of activation of the 

ECS on learning and memory, the neural activity in the 

hippocampus and, in parallel, the temporary coordination of 

this activity by the field theta rhythm were analyzed. In 

particular, Robbe and Buzsáki [70] showed that the synthetic 

CB1R agonist CP55940 caused cognitive deficit in rats 

performing a spatial task of delayed alternation in a modified 

T-maze and decreased the power of theta, gamma, and ripple 

oscillations in the hippocampus. The binding of the activity of 

the place cells to the phase of theta wave was also 

significantly deteriorated. The temporal coordination of cell 

ensembles was also impaired in short time intervals (<100 

ms). The authors believe that cannabinoids can impair 

memory primarily by disturbing the temporal dynamics of 

hippocampal neurons, regulated by theta rhythm [70] and 

thereby disrupt spatial memory. 

Interestingly, the study by Marsicano and colleagues 

[77] demonstrated a new mechanism for astroglial control of 

synaptic plasticity and memory through the D-serine-

dependent modulation of NMDA receptors.  The authors 

showed that activation of astroglial CB1Rs controls the 

hippocampal LTP by regulating the synaptic level of D-serine, 

a signaling amino acid [77].  

As regards the role of CB2 receptor activation in 

modulating cognitive functions, interesting results were 

obtained by Manzanares and co-authors [78]. This work 

clearly showed that the selective CB2R agonist JWH133 was 

shown to improved memory consolidation, while the CBR 

antagonist AM630 worsened memory responses. Later, Kruk-

Slomka and Biala [79] showed that JWH133 at a low dose 

(0.5 mg/kg) had no effect on learning but enhanced the 

consolidation of long-term memory in the passive avoidance 
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test. At the same time, JWH133 at higher doses (1 and 2 

mg/kg) improved both the acquisition and consolidation of 

long-term memory. Subsequently, similar results were 

obtained by Pires and colleagues [76]. At the same time, it 

was found in another work on CB2 receptor knockout mice 

that hippocampal-dependent long-term contextual fear 

memory was impaired, while hippocampus-independent cued 

fear memory was normal. In contrast to CB2 receptor 

knockout, acute blockade of CB2 receptors by AM603 in 

C57BL/6J mice did not affect memory [80]. It should also be 

noted that the specific effects of CB2R ligands on cognitive 

processes seem to be quite complex and still cannot be exactly 

assessed. 

An important role of the ECS in cognitive functioning 

was revealed in the work by Busquets-Garcia and colleagues 

[81], where an original learning model, the mediated learning, 

was used [82]. A typical initial behavioral procedure in this 

model is sensory preconditioning, where pairs of two minor 

stimuli (smells, light, tones, gustatory stimuli) are 

accompanied by the classical conditioning of one of them 

with an aversive or appetitive unconditioned reinforce. As a 

result of these associations, subjects avoid or prefer a stimulus 

that has never been clearly combined with a conditioned 

stimulus [83,84]. Sensory preconditioning involves three 

different, sequential processes. First, an incidental association 

is formed between low-significant stimuli during the 

preconditioning phase; second, direct association of one of 

initial signals with the reinforce stimulus enhances its salience 

during the conditioning phase; third, the presentation to the 

subject of any of the initial signals (directly associated with 

the conditioned stimulus or never associated with it) reveals 

the retrieval of direct or mediated memory, respectively. It 

should be noted that the behavior of animals in natural life is 

more often associated precisely with mediated learning based 

on previous experience; the same applies to human behavior 

[82,85]. Busquets-Garcia and colleagues [81] used this model 

of incidental learning and found that this learning was 

impaired in CB1R knockout mice (CB1R-KO) (Figure 1). In 

this investigation, wild-type and CB1R knockout mice were 

preconditioned with pairs of stimuli: smell–taste (banana (+) 

and almonds (-) as smells; sucrose (+) and maltodextrin (-) as 

taste), followed by conditioning one of two stimuli, pleasant 

or unpleasant; then a test stimulus was presented that was 

different from the conditioned one (with indirect learning) or 

the same content (with direct learning) (Figure 1A). The 

authors have convincingly shown that in CB1R-KO mice the 

mediated learning was impaired (Figures 1B, 1C), while direct 

learning was preserved (Figures 1D, 1E). This demonstrates 

that CB1Rs are essential for this type of wildlife training. At 

the same time, control mice showed no significant difference 

in the two learning models, classical and mediated. 

Interestingly, CB1R knockout mice (CB1R-KO) exhibited 

impaired mediated learning regardless of the sensory modality 

of the test stimulus (Figures 1B, 1C).  

 

Figure 1: CB1R Are necessary for odor – taste-mediated learning. (A) Schematic table of the odor-taste sensory preconditioning 

protocol. (B and C) Liquid consumption under conditions of mediated taste (B) or odor (C) aversion in CB1R-KO mice and wild-

type littermates (CB1R-WT). (D and E) Liquid consumption under conditions of direct odor (D) or taste (E) aversion in CB1R-

KO mice and CB1R-WT. *p < 0.05; ***p < 0.001 (mCS+ versus mCS_ or CS+ versus CS-). Detailed explanations in the text. 

Reproduced with permission from [81] (License Number: 4910190703871). 
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This study also provided evidence that the activity of 

cholecystokinin-containing CB1R expressing GABAergic 

hippocampal neurons plays a crucial role in mediated 

learning. The authors ultimately concluded that fine regulation 

of hippocampal GABAergic interneurons via CB1Rs can 

explain how humans and animals integrate and associate a 

variety of randomly occurring low-salience signals so that, as 

a result, they develop a seemingly unreasonable attraction or 

aversion to specific objects, places, or people [82,85]. Thus, 

the use of nonstandard strategies in the study of the ECS can 

reveal its specific role in cognitive behavior. 

Interesting results were also obtained by the research 

group of Bénard & Marsicano who showed the dependence of 

cognitive deficits caused by CBR agonists on mitochondrial 

CB1 receptors [86]. In their study of hippocampus-dependent 

memory, it was demonstrated that the synthetic cannabinoids 

WIN-2 and HU210, administered intrahippocampally, cause 

acute memory impairment in mice during the recognition of 

new objects in an L-maze. Thus, the data of these authors 

evidenced that bioenergetic processes occurring in 

mitochondria of hippocampal cells operate as subcellular 

regulators of cognitive functions mediated by CB1 receptors 

[86]. 

Changes in cognitive functions upon modulation of 

metabolism of eCBs 

Modulating the levels of the eCBs (i.e., anandamide 

and 2-AG by the pharmacological blockade of their 

catabolism) is a promising approach to the treatment of AD. 

Most importantly, this manipulation augments no relevant 

side effects (for details, see reviews [36,87].  

In the work by Yasar and colleagues [88], the effects 

of URB597 (a FAAH inhibitor) and WY14643 (an agonist of 

PPARα) on the learning of rats in the hippocampus-dependent 

passive avoidance task were investigated. The drugs were 

injected before or immediately after the training session (to 

assess the effect on memory acquisition and consolidation, 

respectively) or before a test conducted 24 h after the training 

session to determine their effect on memory retrieval. 

URB597 and WY14643 induced significant improvement in 

learning. This facilitation was blocked by MK886, a PPARα 

antagonist. It is known that PPARα is a target of the eCB 

AEA (except for CB1Rs); therefore, the blockade of the 

FAAH enzyme by URB597, had the same effect as the 

administration of the PPARα agonist. On the other hand, no 

effects on consolidation or memory retrieval were observed 

after the administration of WY14643 [88].  

Busquets-Garcia and colleagues studied the role of the 

endocannabinoids AEA and 2-AG, as well as rapamycin, in 

modulating the specific types of memory (contextual 

hippocampus-dependent memory and memory on object 

recognition in the V-maze) [89]. In these experiments, two 

inhibitors of eCB catabolism, which increase the levels of 

AEA and 2-AG, as well as THC and rapamycin were injected 

to the mice of different groups. An increase in the 2-AG level 

did not affect memory consolidation and mTOR signaling in 

the hippocampus; at the same time, the modulation of AEA 

and the administration of THC induced the disturbance of 

these processes, which was removed by rimonabant (i.e., 

through CB1R) [89]. However, any significant effect on 

CB1R protein levels was not revealed. As the authors 

beleaved, the elevated AEA level inhibits CaMKIV and 

CREB phosphorylation via the activation of CB1Rs [44]. 

Thus, a diversity in the effects of increased brain level 

of the two eCBs was found: 2-AG did not change the memory 

[89], and AEA caused its deficiency [44]. However, the later 

two works [71,90] showed the role of both CB1 and CB2 

receptors in the consolidation of memory in the model of 

memorizing negative experiences that require the activation of 

inhibitory mechanisms. It is important to note that these 

studies did not always control the modulation of the levels of 

other biologically active lipids; differences in their 

concentration may be the reason for the observed 

inconsistencies in the results.  

Summing up the effects of eCBs on cognitive functions 

in animals, one can conclude that the use of the most adequate 

experimental approaches, for example, mediated learning or 

the application of olfactory signals that are of the greatest 

importance for rodents, allowed one to demonstrate the 

positive influence of ECS activation on both learning and 

plastic processes in the hippocampus. These approaches break 

the popular opinion about predominantly negative influence 

of eCBs on cognition. In addition, taking into account the 

presence of CB1Rs on astroglial cells, experiments revealed 

their significant role in memory and the development of LTP 

in the hippocampus. Using a test based on the involvement of 

the hippocampus in the control of behavior, it was 

convincingly shown that the consolidation of hippocampus-

dependent memory is facilitated by an increase in the level of 

AEA, through the competitive activation of CB1 and CB2 

receptors, and in the level of 2AG, mainly via the activation 

of CB2 receptors. 

Endocannabinoid system as a brain target in 

models of Alzheimer's disease   

Alzheimer's disease (AD) is a debilitating 

neurodegenerative disease characterized by declining 

cognition and behavioral impairment. The precise etiology of 

AD remains unclear. There is a tendency to regard Aβ as a 

trigger for disease progression [91]. At the morphological 

level, the most characteristic changes in AD are the damage 

to/death of neurons, especially in the hippocampus and 

neocortex, and the rearrangement of neural networks [92,93].  

Unfortunately, all the drugs influencing the production, 

clearance, and aggregation of Aβ which have been tested are 

clinically ineffective [94]. Although the pathophysiological 

role of the ECS in AD is still elusive, the lack of CB1 

receptors has been associated with a faster decline in the 

cognitive function and loss of neurons in the hippocampus in 

wild-type mice [69]. On the other hand, the administration of 

β-amyloid (Aβ1-42) increased the level of endogenous 2-AG 

and PEA, while exogenous PEA weakened the Aβ-induced 

expression of proinflammatory molecules [95]. In addition, 

the administration of AM404 (an inhibitor of 

endocannabinoid transport) prevents the Aβ-induced 
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degeneration of hippocampal neurons [96]. This suggests that 

the ECS activation may prevent the development of AD.  

Indeed, cannabinoid treatments, especially CBD, have 

great potential [52, 97-100]. Thus, in rodent models of AD, 

cannabinoids reduce Aβ accumulation and improve memory 

[101,102]. Administration of low doses of THC in rats was 

associated with an improvement of cognitive functions; the 

ultralow doses of THC protected the mice brain from 

neuroinflammation-induced cognitive damage [103]. Besides, 

a CB2 agonist (MDA7) promotes Aβ clearance, decreases the 

IL-1β level, and improves memory in rats with cognitive 

impairment induced by bilateral microinjections of Aβ into 

the hippocampus [104].  

Studies using an AD-relevant rodent model induced by 

the administration of Aβ25-35 showed that the injection of 

WIN-2 into rats prevented the Aβ-induced activation of 

microglia, cognitive impairment in a spatial learning task, and 

neuronal death [105]. Later, it has been shown that the 

neuroprotective effect of CB1R activation is provided by 

different mechanisms: the inhibition of the release of 

glutamate, calcium, cytokines, tumor necrosis factor alpha and 

inducible NO synthase, the blockage of the voltage-dependent 

calcium channel, and Aβ clearance [106-109].  

In 2019, in a rat model of sporadic form of AD 

(generated by streptozotocin injection), a cognitive 

impairment was revealed, which was reversed by the 

administration of ACEA, a CB1R agonist, which was found to 

increase the level of the anti-apoptotic protein Bcl-2 [110]. 

Besides, the oral administration for four months of JWH133, a 

selective CB2R agonist, prevented memory impairment in AD 

mice, while normalizing the cerebral glucose metabolism as 

measured by PET; it also counteracted the activation of 

microglia [102]. In addition, CB1R agonists were reported to 

decrease Aβ toxicity, restoring the electrophysiological 

properties of pyramidal neurons in hippocampal field CA1, 

decreasing tau hyperphosphorylation and the inflammatory 

response, and reversing the behavioral changes in rodents 

[96,105,111].  

Recently, on 5xFAD transgenic mice (expressing 

human APP and PSEN1 transgenes with a total of five AD-

linked mutations) it was demonstrated that CBD treatment 

ameliorated the symptoms of AD and retarded cognitive 

decline [112]. In this study, the authors used the New Object 

Recognition behavior testing method and showed that CBD 

improved cognitive function compared to untreated animals 

(Figure 2). Further, immunofluorescence staining 

demonstrated a reduction in the level of amyloid-β in brain 

tissues of CBD treated 5xFAD mice. 

 

Figure 2: CBD treatment improved cognitive function and ameliorated the pathophysiology of Alzheimer’s disease (AD). A-C) 

The Novel Object Recognition method (A upper panel and B) of behavior testing showed that CBD improved cognitive function, 

as compared to untreated animals (∗p ≤ 0.04). Open Field testing method (A Lower panel and C) suggested that CBD treatment 

could ameliorate the cognitive function in 5×FAD mice. D) Immunofluorescence staining demonstrated the reduction of beta-

amyloid expression in the brain tissues of 5×FAD mice treated with CBD, indicating the protective effects and potential reduction 

in the pathophysiology of AD. Panels are representing 6–10 animals per each experimental group showing deposition of amyloid-

_ (yellow arrows) in the hippocampus area of WT mice brain, and 5×FAD mice brain treated/untreated with CBD. Localization of 

amyloid-β (red) on the nucleus is visualized by imposing red staining over blue, creating pink images. The blue color is 

representing DNA staining with DAPI (4', 6-diamidino-2-phenylindole) to identify the nuclear presence and cell viability. Images 

are all shown in 100× magnification.  

Reprinted from [112] with permission from IOS Press. 
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Interestingly, MAGL inhibition was associated with 

several anti-AD effects: reduction in neuroinflammation, 

improvement of synaptic plasticity, spatial learning, and 

memory in AD animals [1]. Later it was shown that the 

selective pharmacological inhibition of MAGL and FAAH or 

dual inhibition of FAAH/MAGL followed by an increase in 

anandamide and 2-AG [113-115] promotes a reduction in Aβ-

protein deposition in a rodent model of AD [see 34,36]. 

Furthermore, URB597 efficiently suppressed Aβ42-induced 

glutamate toxicity in primary hippocampal neurons and 

stimulated the mitochondrial membrane potential [116]. 

URB597 treatment is associated with the reduction in the 

level of interleukin (IL)-1β, and restoration of long-term 

potentiation in aged rats [117]. Hai and colleagues [118] using 

the Morris water maze investigated the protective effects of 

the FAAH inhibitor URB597 and the CBR agonist WIN-2 on 

cognitive impairment in rats caused by chronic cerebral 

hypoperfusion, which is considered one of the causes of AD 

and other neurodegenerations (see [119]). The expression of 

the protein associated with microtubules-2 (MAP-2), 

synaptophysin, CB1R, and brain neurotrophic factor BDNF 

was determined by Western blotting. The introduction of 

WIN-2 and URB597 improved the abilities for learning and 

memorizing [118]. Thus, these data suggest that WIN-2 and 

URB597 prevent cognitive impairment via the PI3K/AKT 

pathway. 

Since CB1 receptors are primarily related to the 

unwanted psychotropic effects of marijuana-derived 

cannabinoids, the CB2 receptor becomes really attractive as a 

druggable target. The activation of CB2Rs was shown to 

counteract the Aβ-induced neurotoxicity [99,102,105,120], 

mainly via modulating activated microglia. Experiments on an 

APP/PS1 model of AD in mice showed that CBD reduced 

cognitive impairments, preventing the development of a 

deficit in social recognition [121]. It was also observed that 

CBD and THC promoted memory retention and decreased 

astrogliosis and inflammation in APP/PS1 mice [111].  

Recent reviews have demonstrated the potential of 

cannabinoid drugs in AD therapy and indicated also their 

limitations [122,123]. More research is needed to avoid the 

negative consequences of using ECS activation in AD 

treatment.  

Conclusions 

An analysis of neurobiological data showed that the 

opinions of different authors on the role of the ECS in 

cognitive functions do not coincide. To understand this 

problem, it is necessary, first of all, to take into account that 

the action of eCBs may differ from that of exogenous 

cannabinoids, which non-selectively affect CB receptors and 

can alter the functioning of the ECS. This issue has 

complicated the determination of the specific role of 

(endo)cannabinoids in cognitive processes. It is also important 

to stress that the effects of certain cannabinoid drugs on 

mental processes can be opposite, depending on the 

mechanisms involved in cognitive functions.  

Analysis of experimental data obtained in the animal 

models of AD, in most cases indicate a positive role of eCBs 

in the functioning of the brain, in particular, in its cognitive 

functions. It is known that the ECS controls cellular 

homeostasis, which disturbed in brain with this pathology, 

and, therefore, its activation is a promising approach to the 

treatment of this disease.  

The therapeutic potential of (endo)cannabinoids is 

clearly manifested in the development of AD; this makes it 

possible to estimate how the activation of the ECS affects 

cognitive functions in these diseases. At the same time, the 

inconsistency of available data in this aspect indicates a great 

need for further investigations using modern approaches to 

fully understand the role of the eCBs in the cognitive 

functions.  
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