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Clinical features and diagnosis of human Oguchi 

disease 

In 1907, a Japanese ophthalmologist known as Dr. Chuta 

Oguchi described a case of night blindness with delayed dark 

adaptation [1]. Over several decades, the disease was further 

characterized to be congenital, stationary, and globally 

distributed in regions including Japan, China, India, Europe, 

Pakistan, and Egypt [2-7]. Patients typically reported a 

decrease in night vision but retained normal daytime visual 

acuity and color vision. Slit lamp examination revealed a 

peculiar metallic-gray or golden-brown fundus discoloration, 

which normalized after a prolonged period of dark adaptation. 

This so-called Mizuo-Nakamura phenomenon differentiates 

this disease from other congenital nyctalopias [2,8]. Oguchi 

disease is also peculiar in patients’ ability to fully dark-adapt 

when they stay long enough in the dark. Currently, it is 

classified as a form of congenital stationary night blindness 

(CSNB). However, its definitive status as stationary has been 

challenged as disease progression to photoreceptor loss has 

been documented in animal models and some patients [3,9-11]. 

The diagnosis of Oguchi disease may be suspected based 

on the Mizuo-Nakamura phenomenon and patient history but 

must be differentiated from other CSNBs and/or confirmed 

through electroretinography [12] or DNA sequencing [13]. The 

electroretinogram (ERG) measures retinal light responses to 

brief flashes. It consists of an a-wave and a b-wave, the former 

of which directly depends on the health and function of rod and 

cone photoreceptors.  ERG is recordable in Oguchi disease 

patients following an extensive period of dark exposure. ERG 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

performed under a normal condition in a clinic usually showed 

a much-reduced rod response [6,12]. In general, ERG studies 

showed that rod photoreceptors in Oguchi disease patients are 

present but reliable recordings require four times longer than 

normal period of dark adaptation. Importantly, once dark-

adapted, rod-mediated ERG responses in most Oguchi disease 

patients are comparable to healthy controls [6,12].  Cone-

mediated ERG responses can be isolated from those from rods 

using proper background light exposure and recording settings 

and most Type-II Oguchi disease patients showed normal cone-

derived ERG.  

Genetic basis of human Oguchi disease 

Oguchi disease is inherited in an autosomal recessive 

manner, and mutations are localized to one of two genetic loci 

[14]. Visual arrestin, also known as the S-antigen (SAG) or 

arrestin-1, was the first locus identified, and occurred 

frequently in the Japanese population [4,15-19].  Pathology 

associated with SAG mutations constitutes the Type I Oguchi 

disease. Interestingly, there was one reported case with an 

autosomal dominant inheritance [16]. The Type II Oguchi 

disease results from mutations in the rhodopsin kinase (Grk1) 

gene. It is primarily associated with patients of European 

descent [4,19]. While missense mutations at either locus 

produce pathology, base deletion and frameshift mutations at 

these genes are more commonly encountered [8,15]. 

While both types of Oguchi disease are regarded as 

stationary, this notion is currently under scrutiny because 

retinitis pigmentosa (RP), a relentlessly progressive retinal 
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disease, has also been associated with SAG and GRK1 

mutations [16,20]. RP begins with progressive loss of 

peripheral eyesight, leading to tunnel vision, and eventually 

total blindness. Though rare, adults with Oguchi disease can 

demonstrate a similar progressive retinal degeneration to that 

typically found in early-stage RP patients, which may include 

a shared golden fundal discoloration like the Mizuo-Nakamura 

phenomenon [17]. The association between RP and Oguchi 

disease suggests the latter is capable of a slow but sure 

progression to irreversible retinal damage in humans. Several 

additional studies have documented conspicuous 

organizational changes within human and mouse retinas after 

intense light exposure [10,21]. Among these reported findings 

are shortened rod outer segments, reversibly hyper-reflective 

outer segment regions, and thinning of the parafoveal outer 

nuclear layer in the human retina [10,21]. Rod intensity 

changes suggest that rod cells are the primary site of pathology 

and the culprit responsible for the observed fundus changes 

associated with disease. Despite its categorization as a CSNB, 

structural changes in the retina may still develop over time [21]. 

RP may also present with nyctalopia, and Type I Oguchi 

patients later developing RP have been reported [12,16]. The 

newfound convolution between these two clinical entities and 

the presence of retinal structure changes begs again the 

question of whether Oguchi disease is truly a stationary 

pathology. 

It is necessary to understand the recovery phase of 

phototransduction, particularly the deactivation of 

photoexcited rhodopsin, to comprehend the absence of normal 

dark adaptation in Oguchi disease patients [10,22]. 

Metarhodopsin II is the active intermediate responsible for the 

elevation of the visual threshold in Oguchi disease [23]. When 

the retina is devoid of light stimulation, both rods and cones 

undergo rapid adaptational processes in efforts to regain light 

sensitivity, a process known as dark adaptation. Retinal light 

sensitivity improves one-thousand-fold within a few minutes in 

the dark in healthy individuals, during which recovery is 

mediated mainly by cones. In contrast, rods are slower to dark 

adapt and require approximately 30 minutes in normal 

individuals, during which light sensitivity increases further by 

several orders of magnitude. A rod becomes sensitive again to 

dim light only after complete dark adaptation [12] that allows 

nearly all activated rhodopsin molecules to be silenced and 

regenerated. This is because rods are easily saturated with <4% 

of activated rhodopsin lingering in the system [12,23,24]. 

Phototransduction 

Human rods are known for decades that they detect single 

photons. Phototransduction, composed of a cascade of 

biochemical reactions taking place in the photoreceptor outer 

segment, is the signaling pathway behind this amazing feast. It 

occurs when a photon strikes a rhodopsin molecule and 

transforms the covalently bound chromophore 11-cis-retinal 

into an all-trans form. Photoisomerization of the chromophore 

triggers conformational changes in the rhodopsin molecule, 

leading to the adoption of the active Metarhodopsin II 

configuration. Rhodopsin is a G-protein-coupled receptor 

composed of the apoprotein opsin and the bound chromophore 

[25]. Once activated, it stimulates the heterotrimeric G-protein 

transducin by catalytically facilitating the exchange of GTP for 

GDP on the transducin α subunit, which in turn binds the 

inhibitory  subunit of phosphodiesterase 6. The resulting 

disinhibition of the near-perfect enzyme phosphodiesterase 6 

[26] leads to a rapid decline in intracellular cGMP 

concentration and the closure of cGMP-gated channels situated 

on the outer segment plasma membranes, resulting in a rapid 

membrane hyperpolarization and hence a neuronal signal that 

is relayed to subsequent retinal neurons.    

GRK1 mutations, like those in arrestin-1, cause profound 

delays in rod recovery because the shut-off of activated 

rhodopsin is impaired [27]. Rhodopsin phosphorylation by 

GRK1 enables steric capping of phosphorylated rhodopsin by 

SAG to prevent further transducin activation. Because they 

work in tandem, damage to either the Grk1 or the arrestin-1 

gene results in the same recovery defect [28]. It is worth 

mentioning that in Oguchi disease, complete photoreceptor 

recovery is still achievable, if these patients stay in the dark 

long enough to regenerate all activated rhodopsin to regain light 

sensitivity. The Metarhodopsin II tends to persist until the 

photoisomerized all-trans retinal spontaneously dissociates 

from it, a natural decay process that takes minutes to occur. To 

ensure timely rhodopsin deactivation and prevent 

oversaturation of phototransduction, activated rhodopsin in 

normal individuals is phosphorylated at its carboxyl terminus 

by GRK1 [29] and then followed by the binding of SAG to 

prevent it from activating transducin. Thereafter, all-trans 

retinal dissociates from opsin, reduced to retinol and then 

reisomerized and recycled in the adjacent pigmented 

epithelium (RPE) through a process called the visual cycle [30]. 

This faster deactivation mechanism of Metarhodopsin II occurs 

within a hundred milliseconds and trumps its slow natural 

decay, which takes ~900 seconds [10,27], and hence alleviates 

its profound negative effect on the recovery of rod sensitivity 

[12,31]. However, this slow decay is likely responsible for the 

lengthy characteristic of dark adaptation found for all Oguchi 

disease patients. It is noteworthy here that there are other forms 

of congenital night blindnesses originating from mutations in 

other components of the phototransduction cascade, and each 

has its own unique determining features [3,12,32].  

The focus on GRK1 

This review centers on GRK1 and not SAG for two 

reasons. First, SAG has already been the subject of a large body 

of research and reviews. Gurevich, for instance, has 

synthesized the current understanding of the roles and 

mutations of visual arrestin [33,34] in Type I Oguchi disease. 

Second, GRK1 remains enigmatic regarding its activation, 

catalytic activity, and intracellular targeting. Additionally, the 

roles of its posttranslational modifications are understudied and 

incompletely understood. We believe that the many disease-

causing missense mutations identified thus far in Type II 

Oguchi disease patients hold the key to additional insights into 

GRK1’s roles in photoreceptors.  

GRK1 is a serine/threonine kinase and a member of the 

G-protein-coupled receptor kinase family [35]. It performs the 

phosphorylation of photoexcited rhodopsin and is required for 

the timely recovery of phototransduction [10,36]. The human 

Grk1 gene is located on chromosome 13q34, measures 563 

amino acids in length and has been sporadically investigated 

for the pathophysiology behind Oguchi disease [8,36-38]. 

GRK1 contains three domains [35], namely, the central kinase 

domain that is responsible for catalytic activity, the N-terminal 
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regulator of G-protein signaling homology (RH) domain that 

presumably facilitates rhodopsin binding [13,39] and the short 

C-terminal domain, which contains a CaaX motif directing 

GRK1 prenylation and subsequent modifications important for 

membrane affinity and intracellular compartmentalization 

[40,41]. Currently, several aspects of GRK1’s physiological 

functions are appreciated. Under normal conditions, it 

phosphorylates activated rhodopsin, a readily assayable 

activity allowing detailed biochemical characterizations [42-

44]. Rhodopsin, a G protein-coupled receptor and the initiator 

of phototransduction, is GRK1’s prime target in rod 

photoreceptors. The phosphorylation of Metarhodopsin II 

reduces its ability to activate transducin, and the subsequent 

binding of arrestin to phosphorylated rhodopsin quenches its 

downstream signaling [8,28]. GRK1 activity is inhibited by 

recoverin at the photoreceptor membrane in a calcium 

dependent manner [44-47]. Though not strictly necessary for 

activation of the phototransduction cascade, recovery of 

phototransduction is much prolonged in GRK1’s absence [10], 

and photoreceptors become prone to light damage in both 

transducin-dependent and transducin-independent manners 

[48,49].  

Just like transducin, GRK1 is also activated by 

photoexcited rhodopsin but its importance in human Oguchi 

disease is unstudied. When assaying kinase activity using a 

rhodopsin C-terminal peptide as a substrate, GRK1 activation 

was discovered as the kinase activity toward the peptide 

substrate increased tremendously when proteolytically 

truncated membrane bound rhodopsin without its C-terminal 

Ser/Thr phosphorylation sites was present [50,51]. The Tesmer 

group has studied the activation mechanism structurally by 

exploring the interactions between G protein-coupled receptor 

kinases and G protein-coupled receptors and determined that 

GRK1 can assume an active conformation when associated 

with negatively charged membrane lipids and/or activated 

rhodopsin [52,53]. Thus, as recoverin inhibits GRK1, 

rhodopsin activates it, while the surrounding transducin 

competes with it (for activated rhodopsin). Tesmer’s 

conclusions are supported by the successful docking of 

GRK1’s N-terminus into a structural cleft in the activated 

rhodopsin, where it reorganizes into an alpha helix [53]. In 

addition, acidic and basic residues on GRK1 and rhodopsin, 

respectively, could stabilize this active configuration [53]. We 

want to point out here that a missense mutation at either of these 

sites could theoretically disrupt the GRK1-rhodopsin complex 

and decrease GRK1 activity, resulting in a phenotype 

somewhat mimicking Oguchi disease. However, it is 

noteworthy that these structure-based studies of GRK1 

activation used a recombinant bovine GRK1 truncated at 

residue 535 lacking much of the C-terminal domain and the 

CaaX box. A 4bp deletion near this truncation site in humans 

causes Oguchi disease [8]. When the mutant human GRK1, 

designated as HRKS536(4-bp del), was ectopically expressed 

in the COS7 cells, it exhibited barely measurable light-

dependent kinase activity toward rhodopsin [54]. The structural 

study of GRK1 activation would benefit greatly from using a 

full-length recombinant or purified native GRK1.   

Though human type II Oguchi disease arises from poor or 

no GRK1-mediated phosphorylation of rhodopsin, GRK1 itself 

has been noted to undergo phosphorylation. In mice, GRK1’s 

phosphorylation by protein kinase A decreases its kinase 

activity for rhodopsin, which typically occurs under scotopic 

conditions. Interference with this process causes a delayed dark 

adaptation, somewhat phenocopying Oguchi disease [55]. As 

the pathologic mechanism of type II Oguchi disease remains 

poorly understood, all aspects of GRK1 regulation by other 

binding partners and/or kinases that phosphorylate it should be 

considered in future investigations.  

In humans, GRK7 is found alongside GRK1 in cones, but 

not in rods [56]. Mice lack a Grk7 gene and express only GRK1 

in both rods and cones [57]. Mice that carry a mutation 

removing the PKA-dependent phosphorylation site Ser21 do 

not demonstrate a delayed dark adaptation in cones [55]. In 

contrast, cone recovery is greatly delayed in the GRK1 

knockout mice [58]. These findings suggest GRK1 may have a 

peripheral or a replaceable role in the recovery of cone 

phototransduction in humans [19,27].  

Unsolved mysteries of GRK1 

Despite the ample research conducted on Type II Oguchi 

disease, some points remain obscure. Most relevantly, we do 

not understand how each specific GRK1 missense mutations 

disrupts its phosphorylation of rhodopsin. Hypotheses 

regarding this issue have evolved over decades from the general 

concept of a metabolic versus neurologic etiology, all the way 

to the structural changes proposed for GRK1 molecule with a 

disease-causing mutation [2,13,24]. One overly simplified 

hypothesis stated that these mutations disrupt GRK1’s catalytic 

activity toward activated rhodopsin [54]. Other speculated 

dysfunctions, such as insults to GRK1’s stability and/or ability 

to bind activated rhodopsin (in the missense mutation of the N-

terminal RH domain), have not been explored at all. 

Recoverin is a neuronal calcium sensor in the retina that 

inhibits GRK1 in its calcium-bound state [28,44,59]. It 

decreases the phosphorylation of rhodopsin by binding and 

inhibiting GRK1, resulting in a slower deactivation of 

rhodopsin in darkness. In bright light and when intracellular 

calcium concentration decreases, recoverin releases GRK1 and 

increases the phosphorylation of rhodopsin [28,46,59]. In the 

dark, the interaction between GRK1 and recoverin somewhat 

mimics the dysfunctional state of mutant GRK1 found in type 

II Oguchi disease. Such a mimicry can conceivably be 

augmented in a constitutively active recoverin mutant mouse 

that phenocopies some if not all reported GRK1 knockout 

phenotypes. However, defects in recoverin’s regulation of 

GRK1 activity are unlikely to be pathological as the recoverin 

knockout mice do not show an Oguchi disease-like ERG or 

morphological phenotypes, despite other functional 

abnormalities were nonetheless noted [60-63]. 

Other than a report showing that the ability of the V380D 

GRK1 mutant to phosphorylate activated rhodopsin is 

completely disrupted [54], there are no reports of new 

pathologic mechanisms. Previous investigations using the 

knockout approach established GRK1 as the sole kinase 

responsible for light-dependent rhodopsin phosphorylation and 

deactivation [9,10,64]. Current literature supports the notion 

that GRK7 alone can support timely cone recovery in the 

absence of GRK1 in humans. However, cones are also affected 

in some Oguchi disease patients, demonstrated, for instance, in 

a report of two Japanese siblings with Pro391His Grk1 

mutations [19]. Research in zebrafish has also shown GRK7 

knockdown to flagrantly impair cone response recovery and 

dark adaptation [55,65]. Granted that we do not appreciate a 
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clinically significant impact on cone function in most Oguchi 

disease patients, GRK7 likely compensates significantly for 

GRK1 dysfunction. Further, it is possible that GRK1 and 

GRK7 might interact in a way that mutations in GRK1 could 

undermine GRK7 activity resulting in impaired cone recovery. 

Alternatively, due to the potential for rod cell death in Type II 

Oguchi disease [10], cone functional changes could be due to 

the absence of surrounding rod support precipitating into 

nearby cones’ dysfunction or death. This phenomenon is well-

known in RP as a bystander effect [66]. Additional information 

on GRK1’s activity in cone cells could determine if future 

research is necessary into cone-function in type II Oguchi 

disease.  

The clinically defining signature of Oguchi disease, the 

Mizuo-Nakamura phenomenon, remains also incompletely 

understood. The peculiar fundal color change was speculated 

to be due to excess extracellular potassium in the retina [15] 

and decreased Müller glial activity. It is currently unclear how 

or if GRK1’s dysfunction bears any responsibility for the 

Mizuo-Nakamura phenomenon, though it notably remains 

present in Oguchi disease caused by arrestin-1 mutation as 

well. Despite the absence of a systemic investigation, one 

report indicates a fundal color change was not observed in 

GRK1 deficient mice [12]. This observation combined with 

their increased vulnerability to light-induced retinal damage 

could reasonably suggest that the Mizuo-Nakamura 

phenomenon does not occur in mice due to physiological 

differences between the two species [3,10]. GRK7 could also 

be the key to further investigation into the physiology behind 

this peculiar fundal color change seen in human patients, given 

its absence in mouse cones, but not human cones [67]. Of note, 

the Mizuo-Nakamura phenomenon is observed in other CSNBs 

such as X-linked cone rod dystrophy and X-linked retinoschisis 

[20]. 

Further work, by focusing on specific pathologic 

missense mutations in GRK1, may clarify its mechanism of 

dysfunction and open the door for novel treatments of not only 

the rare Oguchi disease, but also the relatively more common 

and progressive retinitis pigmentosa involving mutations in the 

rhodopsin gene. Therefore, we tabulate below current known 

GRK1 missense mutations and propose a study in the mouse 

model utilizing the latest genome editing technology to better 

characterize its abnormal function in Oguchi disease. 

Known GRK1 missense mutations and disease 

mechanisms 

We focus on missense mutations here for several reasons. 

Firstly, they may cause phenotypic change without disabling 

the protein completely, allowing greater insights to be gleaned. 

With a single amino acid change, the tertiary structure of GRK1 

may be preserved, altering only a certain aspect of GRK1 

activity but still causing a sufficient pathological consequence. 

In contrast, the more frequently seen frameshift or nonsense 

mutations often result in nonfunctional or truncated GRK1, 

which provide less insight. Secondly, nonsense mutations often 

suffer from nonsense mediated decay, in which mRNAs 

containing premature stop codons are preferentially degraded 

[68], leading to a decreased protein concentration to augment 

the impact already imparted by the mutation.  

Table 1 lists all twelve currently known GRK1 missense 

mutations. All but one of the known GRK1 missense mutations 

localize to the kinase domain, the region responsible for GRK1 

catalytic activity. The V380D mutation has been tested in the 

CO7 cell and determined to have no detectable catalytic 

activity. Mutations in this kinase domain are thus hypothesized 

to disrupt tertiary structure and consequently catalytic activity 

[13]. The sole RH domain mutation, Leu157Pro (L157P), may 

interrupt interaction of GRK1 with rhodopsin, likely secondary 

to proline-kinking [13], with the potential to affect catalytic 

activity and/or GRK1 activation by rhodopsin.  

 

 

Table 1: Known disease-causing Grk1 missense mutations. 
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Retinitis pigmentosa, the leading cause of blindness in 

those younger than 60 years old [69], frequently is 

characterized by mutations found in phototransduction 

proteins. Understanding the Oguchi disease mechanism could 

open significant doors in therapy for what currently is a 

relentlessly progressive, irreversible, and incurable blinding 

disorder. We, therefore, advocate for GRK1 missense 

mutations in type II Oguchi disease to be studied further, 

preferably in animal models with novel genome-editing 

techniques [70]. Results from such studies can be compared 

with published GRK1 knockout data [10,48,49] to uncover 

novel insights concerning GRK1’s mysteries inside rod and 

cone photoreceptors. We expect that phenotypes for various 

Grk1 missense mutations to be dependent on their domain-

localizations, with a disruption of the kinase domain that 

inactivates the kinase to differ from those due to disruption of 

the RH domain responsible for interaction with the substrate 

rhodopsin. To this end, we have begun to generate the V380D 

and L157P knock-in mouse models and plan to study the 

phenotypic differences among the two and the GRK1 knockout 

mice. Preliminary findings using the V380D knock-in mice 

show that this mutation affects GRK1’s expression in the retina 

(Chen CK et al. Invest. Ophthalmol. Vis. Sci. 2024; 

65(7):6199), which suggests that protein stability plays a 

hitherto unappreciated role in the pathologic mechanism of 

Type-II human Oguchi disease.  
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