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Fibrosis and pirfenidone: overview 

Drug development for fibrotic diseases is an important 

activity in today's medicinal researches. For idiopathic 

pulmonary fibrosis (IPF), a devastating disease, a variety of 

drugs have been evaluated based on current paradigm of IPF 

pathogenesis, that is, recurrent injury to the alveolar 

epithelium incurs aberrant wound healing processes, which 

leads to accumulation of excessive amount of extracellular 

matrix (ECM) components, rather than normal tissue repair 

[1,2]. For a wide range of fibrotic diseases with various 

underlying etiologies, common mechanisms have been shown 

or suggested [2,3]. That is, by some stimulation, fibroblasts 

are activated and transdifferentiate into myofibroblasts that 

secrete ECM components. Thus, in addition to loss of alveolar 

epithelium, activated fibroblasts and myofibroblasts are key 

pathological features of IPF and their accumulation associate 

with the progression of fibrosis. In the case of liver fibrosis, 

hepatic stellate cells (HSCs) exhibits proliferation and 

production of ECM proteins [4]. 

In November 2014, the US Food and Drug 

Administration approved pirfenidone (PFD) and nintedanib as 

treatments for IPF [5]. Nintedanib can inhibit receptor 

tyrosine kinase signaling by platelet-derived growth factor 

(PDGF), fibroblast growth factor, and vascular endothelial 

growth factor. Given the enhanced activities of these signaling 

pathways in IPF, understanding molecular mechanisms for 

antifibrotic effects of nintedanib may be relatively 

straightforward [6]. However, how PFD works is poorly 

understood. To our knowledge, as an antifibrotic agent, to 

date, PFD significantly slowed disease progression in four 

randomized, placebo-controlled phase III studies, [7-10]. Cell-

based and animal model-based studies mainly conducted in 

1990s have established that PFD has antiinflammatory, 

antioxidant, and antifibrotic effects [e.g.,11-13]. PFD has 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 exhibited an antifibrotic effect in several tissues including 

lung, liver and kidney [14]. 

Nonetheless, the specific molecular mechanisms by 

which PFD exerts such effects are still a matter of debate. For 

example, it is not clear to what extent the PFD-induced 

suppression of TGF- and p38 MAPK signaling are crucial 

[15]. Nor is clear how antioxidative activity is related to the 

effects on these signaling pathways.  

In this review, we will summarize the available 

literature, with a focus on biochemical aspects of PFD and 

related compounds. The effects on NADPH oxidases 

(Nox)/ROS and profibrogenic TGF-  signaling, which can be 

considered an important link between redox control and 

fibrogenesis, are discussed in comparison with the effects of 

long-used antioxidative reagents including N-acetylcysteine 

(NAC). As novel modalities of PFD, we will also discuss 

recent findings on pathways mediated by regulator of G-

protein signaling 2 (RGS2) and glioma-associated oncogene 

homolog (GLI) and effects on collagen fibril destabilization. 

Later we discuss fluorofenidone and other new drugs with 

some similarities to PFD. We refer readers to a well-balanced 

review article on animal models and cell-based analyses by 

Schaefer et al. [14]. Potential benefits PFD to fibrosis of liver 

heart and kidney have been discussed in a review article by 

Kreuter [16]. 

Early studies on pirfenidone 

Pirfenidone (PFD, 5-methyl-L-phenyl-2-(1H)-pyridone) 

is a relatively soluble crystalline powder with a.m.w. of 185.2 

[17] (Figure 1A). To our knowledge, antifibrotic activity of 

PFD as analysed in cell-based studies drew wide attention in 

1990s. Unique features of PFD noticed therein include the 
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finding that a high concentration (over 1 mM) is necessary for 

the antifibrotic activity, and that both transcriptional and 

translational controls of mRNAs including those for 

proinflammatory cytokines become the target.  

Iyer et al. reported in hamster lungs that bleomycin 

induces increases of several lung toxicity markers (superoxide 

dismutase (SOD) activity, malondialdehyde equivalent levels 

and the lung propyl hydroxylase activity) and that PFD 

partially suppressed such increases [11]. Later, Iyer et al. [18] 

showed that PDF suppresses the increases in procollagen 

mRNA and TGF- mRNA in the bleomycin hamster model 

[18]. Cain et al. showed that PFD>1 mM can downregulate 

the expressions of proinflammatory cytokines, fibroblast 

proliferation and collagen matrix synthesis [17]. Both in 

lipopolysaccharide (LPS)-injected mice serum and in vitro 

macrophage culture medium, PFD treatment decreased TNF-α 

production [17].  

Interestingly, in addition to the transcriptional level 

control, control at the translational level also appears the 

target step of PFD. In Iyer Gurujeyalashmi and Giri and 

Gurujeyalashmi et al. [18,19], the authors showed in 

bleomycin-mouse model over-expression of PDGF-A mRNA 

and that it is down-regulated by IFN-  at the transcriptional 

level, ameliorating the lung fibrosis. PDGF-A and PDGF-B 

transcripts were elevated in BAL cells of bleomycin-treated 

hamster and the elevations were unchanged with PFD. 

Nonetheless, both PDGF-A and PDGF-B protein products 

were downregulated by PFD, suggesting translational (or 

post-translational) controls of these isoforms by PFD. 

Nakazato et al. [20] reported the effect of PFD to suppress 

TNF-α expression at the translational level in LPS-stimulated 

RAW264.7 macrophage-like cell line at 300 mg/L PFD in 

medium. This was also translational level as PFD showed no 

effects on the LPS-induced increase in TNF-α mRNA [20]. 

Additional analyses using transcriptional arrest by 

actinomycin D and differential time of administration of PFD 

supported the importance of translational control [20], with 

TNF-α mRNA stability or total protein synthesis activity of 

cells unchanging. In the same RAW264.7 systems, p38 and 

JNK activation by LPS was not influenced by PFD, arguing 

against the universal of roles of these signaling molecules as 

PFD targets. They also showed that LPS/D-gal (D-

galactosamine) injection increases IFN- and IL-6 in vivo and 

their mRNAs ex vivo, and that here again PFD did not change 

the mRNA levels. This is striking because PFD-mediated 

translational control is likely to occur without changes in the 

activity of the stress kinases. However, underlying 

mechanisms for this translational control remain to be studied. 

Of note, PFD attenuated TGF- induced increase in α-smooth 

muscle actin (α-SMA) and procollagen–I mRNA and protein 

levels, but such effects become evident after a relatively long 

treatment (48 h treatment was used in Conte et al. [21,22]) 

that would allow joint effect of multiple pathways, so early 

events may not be inferred from such studies.  

Later, PFD was applied in various animal models and 

cell-based analyses [14]. In cell-based studies, PFD 

suppresses LPS-induced expression of TNF-α in a few 

different settings human mononuclear cell line and mouse 

macrophage RAW264.7 cell line [20,23] and downregulates 

the expression of TGF- in human lung fibroblasts [24], 

consistent with the findings in clinical trials [25,26]. 

However, while many studies with animal models and clinical 

studies have indicated PDF-mediated downregulation of TGF-

, PDGF, basic fibroblast growth factor, TNF-α as well as and 

matrix metalloproteinase (MMP)-2 and MMP-9 or their 

transcripts [14], cell-based analyses have been relatively few 

and detailed molecular mechanisms for PFD-mediated 

inhibition on expression of these molecules remain unclear.  

Antioxidant defence of PFD and N-

acetylcysteine 

Antioxidative effects of PFD are likely to be tightly 

linked to its antifibrotic and antiinflammatory effects. To 

disentangle these linkages, it seems important to take into 

account the roles for ROS in cellular signaling. It is now 

known that reactive oxygen species (ROS) are not only the 

cytotoxic substances but also important second messenger for 

many cellular processes, and, in particular, TGF- signaling is 

linked to the NADPH oxidases (Nox)/ROS system (see the 

next section). As such, the antioxidative effects should have 

unexpectedly profound ramifications to both antiinflammatory 

and anti-fibrogenic roles of PFD.  

 Analysis using manganese SOD showed that ROS can 

initiate bleomycin-induced fibrosis [27]. ROS can activate 

NF-kB that in turn enhances synthesis of TNF-α [28] Despite 

that interrelationship between Nox system and TGF- 

signaling was largely unknown at the time, Giri et al. [12] 

showed that the reaction rate of PFD was 1.63  1010 M-1 s-1, 

which is comparable to several well-established antioxidants 

including ascorbate, glutathione and cysteine. Compared to 

hydroxyl radical (•OH), the superoxide radical (O2
-• ) 

scavenging was less efficient 42.36 M-1 s-1 with PFD [12]. 

This was supported by Misra et al. [29] that showed that, 

while PFD is ineffective as a scavenger of superoxide radical, 

it is a potent scavenger of hydroxyl radicals, implicating this 

activity for beneficial effects of PFD [29]. Mei et al. [30] 

reported that, increase in oxygen radicals (as measured by 

ESR spectrometer) was observed in an oleic acid (OA)-

induced acute lung injury rat model as anticipated from earlier 

studies on this model [31], and that this increase was most 

effectively suppressed by PFD at 0.5 h after injection of OA 

and PFD, which was an earlier time point at which PFD 

effects on the pathological changes in lung became evident. 

Salazar-Montes et al. showed that, in hepatic cirrhosis models, 

PFD showed protective effects based on several metrics 

including malondialdehyde (MDA) concentration, with PFD 

yielding better results compared to a Nox inhibitor, 

diphenyleneiodonium (DPI) [32]. Overall, these findings 

suggested that direct ROS scavenging accounts for an 

important part of its effects.  

Later, Mitani et al. elucidated a new ROS scavenging 

role for PFD; as a complex with Fe2+, PFD can exert 

superoxide anion-scavenging effects. Of note, ferrous ion 
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(Fe2+) is long thought to be an important active species that 

generate oxidants through interaction with O2. Specifically, 

Fe2+ and H2O2 can generate •OH through Fenton reaction:  

 H2O2 + Fe2+ → Fe3+ + OH- + •OH. 

In Mitani et al. [33], 150  M Fe2+-PFD complex 

exhibited the O2
-• scavenging effect. However, the 

physiological concentration of Fe2+ may be fairly low. In a 

healthy individual, the plasma concentration of non-

transferrin-bound iron typically is considered not to exceed 1 

M [34]. According to the measurement using fluorescent 

probe calcein. Epsztejn et al., for erythroid and myeloid cells, 

the labile iron pool (metabolically reactive and accessible to 

chelators ) is at 1-2 M. [35]. Therefore, it remains to be 

determined what proportion of PFD is forming a complex 

with Fe2+ and exerting scavenging effect against superoxide 

anion in clinical settings.  

We briefly discuss N-acetylcysteine (NAC) here, as 

much of knowledge about roles for ROS in inflammation and 

fibrosis was derived from analyses using NAC. NAC is a 

precursor of cysteine and glutathione and has widely been 

used in therapeutic practices [36]. NAC has antioxidative 

activity through its fast reaction with ROS, such as hydroxyl 

radicals and H2O2, as well as restitution of reduced 

glutathione, which is an endogenous antioxidant [37].  

Cantin et al. showed glutathione deficiency in epithelial 

lining fluid of the lower respiratory tract of patients with IPF 

[38], suggesting an oxidant-antioxidant imbalance at the 

alveolar surface of the patients. Many studies have reported 

that reduced glutathione (GSH) is significantly decreased in 

the patients with chronic obstructive pulmonary disease 

(COPD). NAC is considered to reduce the rate of COPD 

exacerbations and improve small airway function, a main part 

of which is ascribed to antioxidative activity of NAC. Oral 

administration of NAC 600 mg/day for 5 days increased GSH 

in bronchoalveolar lavage fluid [39]. NAC was shown to be 

protective in models of lung ischemia–reperfusion injury [40]. 

Inhibition of TGF- signaling or its direct modification by 

NAC has been considered to have therapeutic value in several 

diseases [36].  

Careful reappraisal of studies using NAC seems helpful 

to better understand mechanisms of PFD effects. It is 

generally difficult to separate direct effects (that depend on 

binding to key signaling proteins) from indirect effects (due to 

ROS scavenging activities). In this regard, comparison with 

NAC may help distinguish direct from indirect effects of PFD. 

In human bronchial epithelial cells, TNFα-induced activation 

of p38 MAPK was attenuated by NAC [41]. More recently, in 

Nam et al., NAC at 1 mM suppressed the lipoteichoic acid- 

and peptidoglycan-induced (i.e. TLR2-mediated) production 

of IL-6 and IL-1. NAC also suppressed TLR2-mediated 

increase of NF- B p65 binding to DNA and activation of 

JNK, p38-MAPK and Akt in a keratinocyte cell line [42], 

implying that activation of these signaling pathways may be 

mediated by ROS.  

Such a broad range of target molecules of ROS make it 

difficult to isolate direct effects from indirect effects of 

antioxidants. To further complicate matters, many signaling 

proteins are redox-sensitive. A well-known example is ASK-1 

(apoptosis signal-regulating kinase-1) which is a member of 

the MAPK kinase kinase family and activates both p38 kinase 

and JNK pathways [43]. ASK-1 is considered to be an 

important effector of Nox in cellular stress responses [44]. 

Nox-derived ROS also act to inhibit various protein tyrosine 

phosphatases, thereby causing enhanced and prolonged 

phosphorylation of receptor tyrosine kinases, which in turn 

causes activation of ERK1/2, p38 and JNK pathways. Likely 

through the latter mechanism, Nox-derived ROS are 

considered to induce phosphoinositide 3-kinase (PI3K)/Akt 

activation in a variety of cells [45,46]. Intriguingly, TGF- 

signaling activates Smad2/3 and PI3K pathways both of 

which in turn upregulate Nox4 expression thereby increasing 

ROS signaling [47]. Overall, in light of ROS-sensitivity of 

these signaling molecules, careful in vitro analyses using 

well-defined purified components may become helpful when 

direct and indirect effects of PFD are to be considered. 

TGF- and Nox interplay  

Exaggerated TGF- signaling has strongly been 

implicated in numerous fibrotic diseases including those 

causing liver heart and lung fibrosis [48,49]. Understandably 

from general role of TGF- in fibrosis, the antifibrotic effect 

of PFD has been shown to be through blockade of TGF- 

signaling [50]. TGF-β activates a unique signal transduction 

pathway that acts via the Smad family of proteins, and in 

addition, via Smad-independent pathway [51]  

Here we briefly review Nox-dependent redox signaling 

and its implications in TGF- biology. We would like to refer 

readers to excellent review articles by Jiang et al. [52]. 

Among the five Nox isoforms of the Nox catalytic subunits 

(i.e., Nox1, Nox2, Nox3, Nox4 and Nox5), it is important to 

note that Nox4 plays pivotal roles in fibroblasts from different 

organs. Gene expression analysis, as well as Nox4 specific 

gene suppression using siRNA, and dominant negative Nox4 

expression and Nox4 knockout mouse analysis all pointed to 

the view that Nox4 is the main Nox isoform that mediates 

profibrotic actions of TGF- in a variety of cells including 

pulmonary fibroblasts, lung mesenchymal cells and kidney 

fibroblasts and liver stellate cells. It is important to note that 

Nox and ROS not only mediate profibrotic effects of TGF-, 

ROS has been shown to potentiate the TGF/Smad signaling, 

although mechanisms for this is largely unclear as yet. For 

example, ROS elicit conversion of the latent form of TGF- to 

its active form. Further, treatment with either various 

antioxidants or Nox4 gene silencing suppresses the TGF- –

induced Smad2/3 phosphorylation.  

It should be noted that in addition to the ROS-

scavengers, drugs specifically target the Nox components are 

currently drawing much attention for potential benefits in 

fibrotic disease [53]. Notably, Genkyotex (Page and 

coworkers) performed systematic structure-activity 

relationship analysis starting from a pyrazolopyridine dione 

core structure and discovered Nox4/Nox1 inhibitors including 

GKT136901 and GKT137831 [54,55]. Some of their 
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compounds exhibited inhibition of collagen deposition with 

higher efficacies in bleomycin-induced pulmonary fibrosis 

model compared to PFD. Hecker et al. showed that [56] 

established fibrosis in lungs of aged mice can be partially 

reversed by administration of GKT137831.  

MAPK as a target of PFD  

TGF- is generally considered to be the most important 

cytokine for fibrogenesis [57]. As the downstream signaling 

pathway downstream to TGF-1, besides Smad2/3 pathway, 

MAP kinases (MAPK) that are ERK1/2, p38 and JNK have 

been implicated [58]. It is understandable that PFD has 

suppressive effects on MAPK activation induced by 

profibrotic factors. However, molecular mechanisms for these 

suppressive effects remain unclear. In particular, it is not clear 

whether the antioxidative effects indirectly abrogate the TGF-

 effects or whether some more direct modulation may be 

taking in place. 

Conte et al. [21] showed that 24 h treatment with PFD 

0.3 mg/ml significantly inhibited the TGF- induced increase 

in phosphorylation of p38 MAPK and Akt in human lung 

fibroblasts. Analyses using different cells also showed similar 

PFD inhibited p38 phosphorylation induced by various 

stimulations in various cell types [59-61]. 

In Li et al. [62], in both unilateral ureteral obstruction 

(UUO)-rats, which is an experimental renal fibrosis model, 

and in vitro analysis with a human renal proximal tubular 

epithelial cell line, PFD inhibited the phosphorylation of 

ERK, p38, and JNK, without changing the expression levels 

of these proteins. In Li et al [62], PFD at 0.5 mg/ml inhibited 

E-cadherin and α-SMA protein expression, type III collagen 

production. By and large, the extent of the suppressions on 

protein expression of α-SMA and type III collagen and 

phosphorylation of MAPK are largely similar to the case with 

a mixture of SB203580 (p38 inhibitor), U0216 (ERK1/2 

inhibitor) and SP600125 (JNK inhibitor). However, as Li et 

al. performed cell-based analyses, not purified proteins, it is 

difficult to discuss direct and indirect effects. 

Ma et al. [63] hypothesized that p38 may be a direct 

target for PFD, based on the understanding that a member of 

the stress-activated protein family. Their molecular docking 

study showed that binding energy is as large as -33.60 

kcal/mol, which is much greater unsigned energy than that for 

TNF-α TGF-. Compared with PFD that required a high 

concentration for p38 inhibition (IC50 : 165.4 M) all tested 

derivatives showed superior inhibitory activity, with 

compounds named 7d and 8d showing 4-5.2 M IC50. These 

suggested some structurally-related compounds might have 

increased inhibitory activity against p38. Ma et al. was 

informative especially because of their use of inhibition assay 

using purified p38, which made interpretation unarguable 

[63]. Of note, the IC50 of PFD (165.4 M) is not as high as 1-

5 mM required for PFD effect against cells, but it could be 

that a higher concentration may become necessary for PFD for 

other effects involving antioxidative activities, which may 

indirectly suppress activation of signaling molecules 

involving p38.  

These studies suggested the p38 MAPK pathway as a 

target important in operating in inhibitory mechanism of PFD. 

However, it is possible that simultaneous inhibition of other 

targets is a requirement of PFD action. First, Nakazato et al. 

showed that in RAW264.7 systems, p38 and JNK 

phosphorylation induced by LPS was not influenced by PFD 

[20]. Further, in Haak et al. [64], one of the compounds 

named MC-6 significantly inhibited increase of 

phosphorylated p38 (based on Western blotting) in TGF--

stimulated IPF lung fibroblasts, but strangely, it showed no 

antifibrotic activity. The latter finding may reflect that 

simultaneous suppression of multiple targets is important for 

the PFD-mediated antifibrotic action.  

Blockade of Smad2/3 and other pathways 

Smad3 is the major contributor in regulation of 

myofibroblast differentiation from fibroblasts [65]. It is well 

known that TGF-β1 promotes Smad3 phosphorylation, which 

accelerates the translocation of the Smad2/3-Smad4 

heterotrimer complex to the nucleus and facilitates the 

transcription of target genes. Smad2/3s are activated by 

phosphorylation, and are released and translocate onto the 

nucleus, activating genes expression including α-SMA [51]. 

Yang et al. [66] showed that the Smad-dependent pathway is 

involved in antifibrotic effect of PFD.  

Recent supports of this view are seen in Shin et al. [67] 

that showed that in TGF-1–induced NPDF (nasal polyp-

derived fibroblasts) 0.5 mg/ml PFD blocks phosphorylation of 

Smad2/3. In Ji et al., PFD attenuated phosphorylated Smad 

(pSmad) level without changing Smad level in kidneys of 

Dahl salt-sensitive rats fed a high-salt diet [68]. Conte et al. 

[22] showed 0.3 mg/ml PFD impaired TGF- induced 

phosphorylation of Smad3 in human lung fibroblasts. 

However, to our knowledge, lack of data from in vitro 

analysis with purified components, molecular mechanisms of 

PFD effect on Smad pathways remain unclear. In lung 

fibroblasts proliferation and differentiation into 

myofibroblasts, PI3K pathway plays a major role [21].  

Novel mechanisms - collagen fibril bundle 

destabilization 

Interestingly, Knüppel et al. showed that both PFD and 

nintedanib can inhibit collagen I fibril formation, reducing the 

size and number of collagen fibril bundles [69,70]. Although 

neither of nintedanib and PFD treatment lead to differential 

degrees of post-translational modifications of collagen in IPF 

fibroblasts compared to fibroblasts from healthy donors, both 

drugs shortened the fibre size and fibril thickness based on 

electron microscopy analysis. This is an interesting finding as 

these drugs can directly interact collagen molecules. Another 

notable feature was that, while nintedanib showed inhibitory 

effects superior to PFD against fibrotic gene expression and 

fibril formation, clinical data have not shown superiority of 
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nintedanib relative to PFD. It would be interesting to envisage 

that there are still unknown targets that collectively cover a 

wide variety of molecules. 

RGS2 

Recent findings have highlighted the importance of 

regulator of G-protein signaling 2 (RGS2) as protective factor 

in fibrosis and as a central mediator of PFD function. Xie et 

al. reported that deletion of RGS2 significantly enhanced IL-

13-induced airway remodelling, including increased 

peribronchial fibrosis and smooth muscle in mice [71]. RGS2 

can inhibit the progression of kidney fibrosis following UUO 

in mice [72]. In an analysis by Xie et al. using mRNA 

expression profiling with GeneChip microarray, RGS2 was 

among the top six genes upregulated at 2 hour treatment with 

10 mM PFD in HFL1, a fetal lung fibroblast cell line. In 

several human lung fibroblast cell lines, RGS2 mRNA 

increased to 6-fold at 2 h after treatment. Further, 

overexpression of RSG2 attenuated the thrombin-stimulated 

increase of connective tissue growth factor (CTGF) mRNA 

expression by more than 50% and inhibited the profibrotic 

effects of thrombin in HFL1 cells. Analysis using knockout 

mice also showed that the upregulation of RGS2 by PFD 

treatment is crucial for PFD protection of mice against 

bleomycin-induced pulmonary fibrosis [71]. 

How does RGS2 control fibrosis? Although RGS2 is 

known as a GTPase-activating protein (GAP) for Gq, GTP is 

essential molecule for initiation of protein synthesis 

(translation). Strikingly, Nguyen et al. showed that RGS2 can 

control initiation of translation [73]. Based on yeast two-

hybrid screening, Nguyen et al. [73] showed that eIF2B 

(eukaryotic initiation factor 2B  subunit) is a binding partner 

of RGS2. eIF2B serves as a promoting factor in guanine 

nucleotide exchange on the eIF2 subunit, thereby promoting 

eIF2-GTP-tRNA ternary complex formation required for 

initiation of translation. In an in vitro translation system, 4 M 

RGS2 addition suppressed translational activity to 30%. 

Further, the ability of eIF2B to promote dissociation of 

GDP from eIF2 was observed to be greatly inhibited by 

RGS2. Transfection analysis also showed that total protein 

synthesis is reduced by RGS2. Although it remains to be 

studied whether such a translational control of gene 

expression takes place to mediate the effects of PFD, currently 

available data about RGS2 localization and functions jointly 

point to a view of multifaceted role of this molecule, not 

solely limited to the role as a GAP. Interestingly, RGS2 may 

have regulatory activity distinct from its known RGS domain 

function [73].  

For example, RGS2, through its peptide fragments 

located outside of the RGS domain, interacts with the TRPV6 

channel and inhibits both Na and Ca currents [74]. Other non-

RGS segments are involved to enhancement by RGS2 of 

microtubule polymerization. Of note, one of well-studied 

functions of RGS2 is that as a negative regulator against α-1 

adrenergic receptor–stimulated cardiomyocyte hypertrophy 

[75]. However, the finding in Nguyen et al. argues the 

possibility that stress-induced up-regulation of RGS2 

expression may impede the development of cardiac 

hypertrophy by inhibiting global protein synthesis [73]. 

In the context of the PFD effects, however, it still 

remains to be analysed how the suppression of total protein 

synthesis observed by Nguyen et al. [73] can be related to 

translational (or post-translational) inhibition of TNF-α and 

other cytokines/growth factors that we have discussed above 

[19,20]. At present, it may be speculated that the changes in 

short-lived protein such as the cytokines may be easily 

detected in the 1990s' studies due to technical difficulty 

observing degradation of stable proteins. Or alternatively, it is 

possible that some specific molecules that target the 

translation of TNF-α mRNA are playing roles. 

To our knowledge molecular mechanisms for PFD effect 

on RGS2 are unknown as yet, but there are ongoing studies on 

transcriptional control of RGS2 dependent on profibrotic 

stimulations [76,77], which may eventually help further 

analysis. 

Hedgehog–Glioma-associated oncogene homolog 

(GLI) pathway as a new target of PFD 

The hedgehog pathway plays a role in lung development, 

likely through epithelial-mesenchymal interactions [78]. 

Recent studies uncovered a new modality of PFD antifibrotic 

effects, which is through inhibition of glioma-associated 

oncogene homolog (GLI) transcription factors [79]. Didiasova 

et al. demonstrated that PFD selectively destabilizes the 

glioma-associated oncogene homolog 2 (GLI-2) protein, the 

primary activator of hedgehog-mediated gene transcription 

[79].  

Although we can cite only a limited number of papers, 

basics related to this finding is as follows. Hedgehog signaling 

plays critical roles in embryonic development, tissue 

patterning and organogenesis. Hedgehog signaling responses 

are mediated by several receptors including Smoothened. 

Sonic hedgehog, one of ligands, is considered important for 

branching morphogenesis of the lung [80]. Sonic hedgehog 

produced by distal epithelium diffuses and activate nearby 

mesenchyme via Smoothened and the receptors and GLIs, a 

family of transcriptional activators. In a simplified description 

of canonical pathway, binding of the hedgehog ligand 

including Sonic hedgehog to the receptor PTCH-1 releases 

tonic inhibition against (and induces structural change in) 

Smoothened and then the latter allows GLI to dissociate from 

Suppressor of fused (Sufu) and to translocate into the nucleus 

and transcriptional regulation.  

Sonic hedgehog expression is upregulated in lung 

fibrosis. [81] and it has been shown that TGF- dependent 

differentiation of myofibroblast in human is mediated by 

hedgehog system machinery [82] Bolanos et al. showed that 

the main components of Sonic signaling pathways, Sonic 

hedgehog, PTCH-1, Smoothened, GLI-1 and GLI-2, are 

overexpressed in IPF lungs [83]. Sonic hedgehog was 

observed mainly in the alveolar and bronchiolar epithelium, 

whereas PTCH-1 observed in mesenchymal cells and in 
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interstitial inflammatory cells [83]. Sonic hedgehog is likely 

to increase the proliferation, migration, ECM production and 

survival of fibroblasts, and, in addition, may be a potent 

chemoattractant for lymphocytes and monocytes. In a 

bleomycin-induced lung model, Moshai et al. [83] observed 

an increased nuclear localization of GLI-1 and GLI-2 at day 

14 after bleomycin treatment of mice and that inhibition of 

GLI activity with GANT61 (an inhibitor of GLI transcription 

factors in the nucleus) decreased lung fibrosis and lung 

collagen accumulation [84]. The presented findings also 

suggest that GLI inhibition has more relevance compared to 

Smoothened inhibition. It may be that GLI can be activated by 

a hedgehog-independent pathways such as TGF- signaling,  

MA-35, another TNF-α and TGF-1 signaling 

inhibitor 

While the success of PFD was an important 

achievement, the human therapeutic dose of PFD is high, 

ranging from 1400 to 2800 mg per day. It is quite possible 

that drugs with longer half-life and higher antifibrotic activity 

than PFD will be discovered in future. This and following 

sections try to cover a few compounds that have structural 

and/or functional similarity to PFD. From such comparisons 

among these compounds, insights into the molecular 

mechanisms of PFD may also be gained.  

A novel indole compound named MA-35 (5-(3,5-

dimethoxybenzyloxy)-3-indoleacetic acid) resembles PFD in 

its ability of dual inhibition against TNF-α and TGF-1 

signaling (Figure 1E). In a quest for renal fibrosis treatment, 

Shima et al. [85] screened their library of indole derivatives 

and observed that MA-35 shows antifibrotic effects in liver-

derived Hep3B and L929 fibrosarcoma cells. IκB kinase 

(IKK) phosphorylation induced by TNF-α was suppressed by 

MA-35. (But MA-35 unchanged the TNF-α induced 

phosphorylation of JNK, p38 and ERK, here again 

demonstrating the non-universal feature of effects on p38 and 

JNK in antifibrotic phenomenon). MA-35 is likely to suppress 

the positive feedback pathway of TNF-α and IKK. TGF--

induced Smad3 phosphorylation was significantly inhibited by 

MA-35 in both LX-2 (hepatic stellate cell line) and NRK-49F 

(rat kidney interstitial fibroblast) cells, thereby reducing the 

expression of fibrotic genes. 

In addition to the evidence for that MA-35 ameliorates 

renal fibrosis in vivo, they further showed that MA-35 inhibits 

the TGF--induced binding of H3K4me1 (methylated histone 

H3K4) binding to the promotor of the collagen I gene and that 

of the gene for plasminogen activator inhibitor-1 (PAI-1). 

This is important as SET7/9 that methylates H3K4 increases 

in a renal fibrosis mice model, [86]. It would be interesting to 

examine whether MA-35 has antioxidative activity and 

whether these dual inhibition of IKK and Smad pathways can 

be attributed to antioxidative activities. Prior to this study, the 

authors had noticed that some indole derivatives show 

interesting biological activities including prolonged life span 

of a mitochondrial disease model [85]. Although many of 

steps of drug design are unpredictable, it is plausible that 

many more compounds will be discovered in future that have 

a good balance of activities and exhibit clinical efficacies.  

 

 
 

Figure 1: Structure of pirfenidone (PFD) and other 

antifibrotic compounds. (A) PFD; (B) Fluorofenidone [87]; 

(C) Carbohydrate-modified 1-(substituted aryl)-5-

trifluoromethyl-2(1H) pyridine [91]. X: carbohydrate; (D) 

MC-3 [64]; (E) MA-35 [85]; (F) Ivacaftor [94]. 

Pirfenidone-related compounds - fluorofenidone 

(AKF-PD), 5-carboxypifenidone and MC-3  

Recent studies have shown several compounds that have 

structurally similarity to PFD and exhibit antifibrotic 

activities. A well-studied example is fluorofenidone [87] 

(Figure 1B). Fluorofenidone (1-(3-fluorophenyl)-5-methyl-2-

(1H)-pyridone) is structurally similar to PFD but the hydro- at 

the meta-position of the benzene ring of PFD is replaced by 

fluoro- in fluorofenidone. Fluorine has greater 

electronegativity compared to hydrogen and this change can 

be significantly change affinities toward some target 

molecules. Nonetheless, it showed efficacy similar to PFD. 

In renal tubulointerstitial fibrosis, angiotensin II (AngII) 

is the key inducer of ROS, mediated by Nox system [87]. 

Using NRK-52E, a rat proximal tubular epithelial cell line, 

Peng et al. [87] compared DPI, PFD and fluorofenidone. PFD 

and fluorofenidone (both at 8 mM) showed similar efficacy in 

inhibition of TGF- mRNA expression and collagen I 

expression in AngII-stimulated cells. Interestingly, DPI was 

more effective than PFD and fluorofenidone in suppressing 

the increase of the Nox activity, but less effective than PFD 

and fluorofenidone in suppressing fibrotic proteins 

expression. This result supports the view that, unlike NAC 

that is a solely antioxidative molecule, PFD and 

fluorofenidone have multiple targets besides Nox/ROS 

system, modulating many signaling pathways and machineries 

for transcription and translation.  

Fluorofenidone exhibited efficacy similar to PFD (or 

slightly more efficacious) in inhibiting platelet-derived growth 

factor (PDGF)-BB-induced increase in α-smooth muscle actin 

and tissue inhibitor of metalloproteinases-1 (TIMP-1) 

expression, which are the marker of hepatic stellate cells 
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(HSCs) activation, in two activated HSCs lines [61]. Both 

fluorofenidone and PFD showed similar effects to inhibit 

phosphorylation of ERK, p38 and JNK in these cells. In 

dimethylnitrosamine (DMN)-induced liver fibrosis rat model, 

fluorofenidone and PFD treatment led to similar levels of 

histological improvement. The similar effect of 

fluorofenidone with PFD corroborates with the view that 

instead of binding a selective target or pocket, an action as a 

free radical-scavenging antioxidant may be the most important 

mechanism for PFD effects. Qin et al. also showed that 

flurofenidone inhibits AngII-induced Akt phosphorylation in 

NRK-52E cells. [88], reinforcing the notion that Nox-derived 

ROS induces phosphoinositide 3-kinase (PI3K)/Akt activation 

in a variety of cells [45,46]. 

In support of this "loose recognition and weak binding" 

concept, a compound MC-3, which retains phenylpyridine 

core of PFD but has two CH3 and para-O instead of meta-

CH3, exhibited inhibitory effect on collagen I production in 

Haak et al. [64] (Figure 1D). It may be reasonable to consider 

that these molecules have many targets with generally low 

and diverse degrees of affinity, modulating functions of many 

molecules simultaneously. Nonetheless there seems to be 

some specificity given that MC-2 and MC-4 showed distinct 

effects. 

Another support to loose recognition and weak binding 

of PFD has come from studies on its metabolites. It has been 

shown that PFD is rapidly metabolized to 5-

hydroxypirfenidone (PFD-OH) and 5-carboxypifenidone 

(PFD-COOH), the latter being the major metabolite and is 

excreted in the urine [89,90]. Interestingly, both PFD-OH and 

PFD-COOH exhibited an inhibitory effect on collagen 

synthesis in vitro WI-38 cells, a human lung fibroblast cell 

line. The effects of these metabolites were not as strong as 

PFD, raising a pharmacokinetical concern in PFD treatment. 

On the other hand, this provides biochemical insights because, 

despite the distinct structures (5-hydroxy vs. 5-carboxy), these 

were similarly efficacious in WI-38 cells.  

Drug development among structurally-related 

compounds is a hot area and in the near future, it is likely that 

some highly potent and safe antifibrotic drugs are discovered. 

For more PFD-derivatives that showed high cell-based 

antifibrotic activities, the following studies are good 

examples. Lou et al. examined carbohydrate-modified 1-

(substituted aryl)-5-trifluoromethyl-2(1H) pyridones and 

found a compound that shows high cell-based inhibitory 

activity against NIH 3T3 (IC50=0.17 mM) (Figure 1C) [91]. 

Chen et al. examined (5-substituent)-2(1H)-pyridone 

derivatives and showed a compound that exhibited a high 

potent of anti-fibrosis with a IC50 of 0.08 mM, about 34 times 

of fluorofenidone. [92]. Wu et al. examined N1-substituted 

phenylhydroquinolinone derivatives and found that 5-

hydroxy-1-(4'-bromophenyl)-5,6,7,8-tetrahydroquinolin-

2(1H)-one (6j) displayed 13 times higher potency (IC50 = 0.3 

mM) than that of fluorofenidone [93]. 

Derivatives of Ivacaftor (4-oxoquinoline-3-

carboxamide) 

Zhu et al. [94] focused on derivatives of Ivacaftor 

(Figure 1F), a drug whose benefit has been shown for cystic 

fibrosis and also shows inhibitory effects on TGF-–induced 

collagen production in rat fibroblasts cells [95]. Some 

derivatives exhibited increased inhibitory potency relative to 

Ivacaftor in TGF-1-induced collagen accumulation in NRK-

49F rat fibroblast cell as well as a higher inhibitory efficacy 

against TNF-α production by LPS challenge of RAW 264.7 

cells than Ivacaftor. Derivative named '10l' significantly 

reduced the number of inflammatory cells in BALF in 

bleomycin-induced lung fibrosis model. Based on 

hydroxyproline levels, '10l' exhibited significant antifibrotic 

effects, while Ivacaftor showed little effects at the same dose 

(20 mg/kg/day) (Table 1). 

1. Are the following mechanisms common to many cell types and tissues? If they are not, what is behind the between-cell 

differences?  

- inhibition of p38 and JNK phosphorylation 

- increased expression of RGS2 

- GLI-2 destabilization-mediated mechanism 

2. Structural details and effects of conditions (ionic strength, pH, etc) remain unclear in;  

- how PFD inhibits p38 MAPK activity 

- how PFD destabilizes collagen fibril  

3. Mechanisms for translational control of TNF- and PDGF shown in early studies are not clear. Is RGS2-mediated 

suppression of translation related to these observations ? 

4. Do antifibrotic efficacies of PFD-related compounds correlate with their antioxidative activities? 

Table 1: Remaining questions about PFD biochemistry.  

Conclusion and perspectives 

As we have seen above, there seem to be many target 

molecules for PFD that are collectively modulated by PFD 

and cause a change of 'tone' of intracellular signaling in favor 

of suppression of fibrogenic signaling. It is not 

straightforward to dissect out the molecular mechanisms of 

PFD effects because many signaling pathways involved in 
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fibrogenesis are interconnected in a complicated manner, 

especially through ROS. So, besides in vitro cell-based 

analyses, it would be informative to test PFD effects against 

biochemically-defined systems made up of purified candidate 

target molecules. For example, PFD destabilizes GLI-2, 

thereby downregulating hedgehog signaling [79], but it is not 

clear as yet to what extent this is a direct effect of PFD on  

GLI-2. In addition to the use of purified molecules, 

comparison of various cells and tissues in PFD effect on GLI-

2 stability may become informative. Comparison of several 

PFD-related compounds may also provide insights. 

From a perspective of drug development, it is 

encouraging that compounds that have similar but subtly 

differing combinations of targets relative to PFD have been 

found. This will increase the chance to find better drugs, when 

differences in pharmacodynamics and tolerability are also 

considered. Of note, interest is growing in the potential utility 

of small molecules in the search of antifibrotic drugs [3]. It is 

interesting to envisage that PFD and related compounds is just 

the tip of iceberg in antifibrotic drug development. There 

seems to be currently unknown intricacy between 'necessity 

and probability', in the area of small molecule-mediated 

antifibrotic effects.  
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